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Chapter I

INTRODUCTION

The main objective of the work reported in this thesis has been

the application of fundamental concepts of continuum mechanics and

numerical analysis for the quantitative description of some commonly

used methods of Rapid Solidification Technology (RST). Although

time limitations have restricted us to the description of only one

process in detail (namely , the Planar Flow Melt Spinning (PFMS)

system), we believe that the information presented should allow

the use of the same methods for the description of any other

Rapid Solidification Processing (RSP) system.

In this first chapter we present some background information

about RST . After defining RSP , we comment on the merits of the

mathematical approach to the study of RST. Then, the significant

changes in structure and properties produced by rapid solidification

are briefly discussed. A comment is also included regarding the

essential process requirements for the achievement of large cooling

and freezing rates. Furthermore, for the sake of motivation and

completeness we briefly review important facts concerning the actual

and possible applications of rapidly solidified materials. We

conclude the chapter with a summary description of what the reader

can expect to find in succeeding chapters.



I.I.- Definition of RSP and the Merits of Mathematical Modeling.

RSP is the namegiven to a wide array of materials processing

operations in which the intended purpose is the production of solid

materials directly from their melts by imposing relatively large

cooling and freezing rates on the molten samples. Although the

boundary between conventional casting operations and RSPis not

clear-cut there seems to be agreement in calling RSPsolidification

processes in which the cooling rates are greater than say 102 °C/s

and the freezing rates larger than about 1 cm/s .

The explicit purpose of RSP is to exploit the structure-

properties correlation so as to be able to obtain products with

desirable metallurgical characteristics in a reproducible fashion.

Because of the peculiar features of RSPsystems, the performance

of suitable measurements, relatively straightforward in other

casting systems, becomesvery difficult at best. Researchers have

resorted again and again to more unorthodox approaches in an

attempt to reveal the fundamentals of RSprocesses. Mathematical

modeling has been one of such approaches ever since the inception

of RST.

The mathematical modeling approach is in reality an attempt to

make the study of RSP systems an interdisciplinary enterprise.

Whenmodeling, one combines the results of actual experiments with

basic principles of continuum mechanics and concepts of numerical

analysis to produce quantitative representations of the processes

2



under study. The explicit objectives of the approach are:

(i) To gain an improved insight into the complex behavior of

RSP systems,

(ii) to establish a quantitative framework for the rational

design and control of RSTdevices, and

(iii) to demonstrate the applicability of somevery basic

principles of physics to the description of complicated,

real-life RSP systems.

1.2.- The Effects of RSPon the Structure of Materials.

The structures of rapidly solidified materials have been found

to be markedly different to those of samples of the samematerials

processed in more conventional ways. There is ample evidence

supporting the structure and property modifications resulting from

RSP. Reference could be madeto the review by Jones (1984) and to

the proceedings of the various international conferences on the

subject (see the References at the end of the report). The interest

generated by these discoveries is such that an international journal

has just appeared specifically devoted to RS research.

According to Grant (1983b), the following effects of RS are

the main reason for the increased attention metallurgists are

paying to RST :

(i) Much reduced extent of segregation. The large cooling and

freezing rates during RSdo not allow time for the separation



and/or growth of segregated phases. As a consequence of this,

multiphase rapidly solidified materials usually contain the

second phases in the form of a homogeneousdispersion of very

fine particles.

(ii) Decreased size of microstructural features. Again , due

to the high cooling rates involved, grains, cells and/or

dendrites are usually much smaller than those found in samples

produced by more conventional methods.

(iii) The possibility of producing new phases or entirely new

materials. It has been found that RSmay prevent the formation

of somephases commonlyobserved in conventionally processed

stock. Instead, new, previously unknownmetastable phases can

appear. Moreover, the effect of RS can be so drastic as to

entirely prevent the formation of any crystalline phases, thus

resulting in metallic glasses.

1.3.- Requirements for Rapid Solidification.

There is one most important requirement that must be satisfied

if one wishes to induce large cooling and freezing rates in molten

samples. The requirement is the rapid formation of a thin layer of

melt in good thermal contact with a heat absorbing medium. Rapidly

solidified structures can also be obtained in bulk samples, however,

if one is careful enough to eliminate all nucleating agents. Since,



in practice, such agents are almost always present, the requirement

of rapidly forming thin liquid layers is really essential. Jones

(1982) has suggested that by imposing any of the following on molten

samples, rapid solidification can be obtained:

(i) A high undercooling prior to solidification. Unfortunately,

this is only possible by the avoidance of nucleating agents.

(ii) A high withdrawal velocity of the sample through a steep

temperature gradient. This is what is usually done during steady

state continuous casting of rapidly solidified materials.

(iii) A high cooling rate during solidification. This is usually

the case during the solidification of the smaller droplets

produced by atomization.

From the above we can conclude that, in most cases of practical

interest, a small sample size is required along at least one spatial

dimension to be able to achieve the benefits of rapid solidification.

1.4.- Properties and Applications of Rapidly Solidified Materials.

Unexpected properties or combinations of them have been found in

rapidly solidified materials. For example, metallic glasses tend to

combine good ductility with high mechanical strength . Also, glasses

with high corrosion resistance or with good catalizing properties

have been found. Rapidly solidified stainless steels have been shown

to be very resistant to high temperature oxidation. Useful electric



and magnetic properties are currently under study. The effects of RS

on specific alloy systems are also being investigated. For example

new alloys have been prepared by combining aluminum with unusual

alloying elements (such as Li), resulting in improvements in thermal

stability and mechanical properties. Property changes have also been

reported in the cases of iron-base alloys and superalloys. These

examples, together with the promise of more to come_ have stimulated

the current interest in RST .

In the last few pages we have presented a summarydescription

of what we believe is important background information about RSTo

At best, the information presented should enable the reader to

understand those aspects of RST to which frequent reference is

made in subsequent chapters without having to resort to the

bibliography. Thus , we have presented a definition of the field

and of the role played by mathematical models, followed by comments

on the effects of RST on materials and the requirements for the

achievement of high cooling and freezing rates.

In the following chapters we take the discussion into the basic

aspects of the modeling of rapid solidification phenomena(Ch. 2),

then into the detailed description of the use of mathematical

modeling techniques for the study of RSPsystems (Ch. 3). We

conclude the report with a summarydescription of our results , a

series of suggestions for further work ( Ch. 4) and the FORTRAN

listings of the computer programs which have produced the bulk of

the results reported ( Ch. 5). Several appendices have also been



included both in order to avoid interrupting the continuity of the

main text and to help in making the monographmore self-contained.

Weclose this chapter now with a comment. Our work constitutes

one more contribution to the rather long history of RS research

at MIT . For the past two decades, young researchers have developed

RS processes and have probed the characteristics of the resulting

products. Mention should be made9f , amongothers , the thesis

reports by Ruhl(1967), Strachan(1967), Lebo(1971), Jansen(1971),

Domalavage(1980), Lynch(1982), Libera(1983), Segal(1983), Ashdown

(1984) and Speck(1985). To them , I am sincerely indebted. Our work,

however, has a slant in a different, relatively new direction. We

have not performed any experiments; however, we hope to have

demonstrated by the end of this report, that the mathematical

modeling approach is indeed a legitimate, alternative way of looking

at RSP problems. Webelieve that the development and optimization

of RST will require a strongly interdisciplinary approach and we

hope that our work will be regarded as an example of the way

mathematical models can contribute to the understanding of RSP.



Chapter 2

THEMODELINGOFRAPIDSOLIDIFICATIONPHENOMENA

In this chapter we undertake a more detailed description of

some fundamental features of rapid solidification. Starting with

a discussion of the effects of RS on the structure of materials

we proceed to present summaryreviews on the maximumundercoolings

achievable in metallic melts, on the likelihood of forming metallic

glasses and on the solidification of undercooled melts. A comment

on the problem of morphological stability is also included.

The attention we devote in this chapter to the undercooling

phenomenonis due to its apparent importance in many RS systems.

Even though our model of the PFMS process, presented in Ch. 3 ,

does not take into account undercooling effects, because the

available evidence seems to indicate this is indeed a good

assumption , these effects can be very significant in other RS

systems. The prospective modeler should be aware of that, and

should also be able to take such effects into account in his/her

calculations, if the need arises. The information presented below

should provide enough background to be able to follow unaided the

current literature on the subject .



2.1.- More on the Effects of RSP .

The effects produced by rapid solidification can be classified

into two main groups: constitutional and microstructural . These

in turn can be subdivided as follows;

(a) Constitutional effects

(i) Metallic glass formation. Metallic glasses can be formed

when the rate of solidification is faster than the rate required

for the formation of crystalline material at the solidification

interface. Metallic glasses can be formed between: (i) metals and

metalloids, (2) transition metal-transltlon metal, and (3)group II

metals - B subgroup solutes . The kinetic conditions for metallic

glass formation are discussed in Sec(2.3) below.

(ii) Formation of non-equilibrlum crystalline phases. It may

well happen that the rate of solidification is faster than that

required for the formation of the equilibrium crystalline phase.

In this case non-equilibrium crystalline phases can appear. These

phases can form between: (i) noble and B- subgroup metals, (2)

B-subgroup - B-subgroup metals, and (3) transition-transition

metals. The conditions required for the formation of non-equi-

librium crystalline phases are described in Sec(2.4) below.

(iii) Solid solubility extensions. Many systems have been found

in which RSproduces significant solid solubility extension. This

phenomenonwas indeed the first indication of the effects of RS.

In Sec(2.5) we discuss solute redistribution during RSP.

9



(b) Microstructural effects

(i) Grain structure and size. Equiaxed grains, cells and

dendrites have all been observed in rapidly solidified specimens.

However, in all cases the sizes involved are much smaller than

those that can be obtained by conventional processes. In Sec(2.2)

we review the thermal conditions required for the production of

microcrystalline structures from the melt and in Sec(2.6) we

briefly describe the main features of the problem of morphological

stability during RS

(ii) Formation of lattice defects. Few heavily dislocated

specimens have been found as a result of RS. Few twins and some

stacking faults have also been observed. On the other hand,

considerable vacancy supersaturations have been found.

The presence of someor all of these effects in rapidly solidified

materials accounts for their unexpected properties. In the sequel

we present a summarydescription of the phenomenawhich produce

such effects.

2.2.- On the MaximumAttainable Undercooling During RSP.

Since the solidification structures of heavily undercooled

samples are usually composedof very finely grained material it

has been natural to ask about the maximumpossible undercooling

a given sample can achieve prior to solidification. The problem

I0



has been studied by Hirth(1978) using concepts from nucleation

theory. It is well known that, given sufficient undercooling prior

to solidification, nucleation and growth can proceed to complete

solidification without the solid-liquid interface ever reaching

the solidus temperature . A sample in this condition is said to be

hypercooled. The condition for hypercooling can be derived from

thermodynamics and it is

Cp ((T L - T N) + (T S - TL)) -_ L (1)

where all the symbols are defined in the List of Symbols. We note

that Eqn(1) is only valid for the situation in which the temperature

is uniform across the sample (Newtonian cooling), however , despite

this limitation it constitutes an useful estimate. It should also be

mentioned that under hypercooled conditions, the rate controlling

step of the solidification process are the atomic jumps across the

solid-liquid interface.

The maximum attainable undercooling is, obviously, the one

corresponding to homogeneous nucleation. An index of merit can then

be defined for the achievement of nucleation control. If the forma-

tion of one nucleus per sample constitutes a suitable definition of

the critical condition for the production of homogeneous micro-

crystalline structures, the use of homogeneous nucleation theory

leads to the following expression for the maximum attainable under-

cooling,

11



TL - TN = (

16 _ _3 _2 T2

3 kB TN L21n( 10 -3 d3(r*/a)2(a/_)Dl(TL - TN)/T )

1/2
)

(2)

Since there are only small differences in the nucleation

behavior of single and multicomponent systems, Eqn(2) can be used to

estimate maximum undercoollngs in both cases.For a given material

and sample size , Eqn(1) can be used to estimate the minimum under-

cooling required for hypercoollng. Afterwards, Eqn(2) can be used

to compute the minimum cooling rate required for the production

of homogeneous microcrystalline structures.

Hirth has been able to obtain reasonable estimates of critical

cooling rates for various alloy systems. His final advice is ,

however, that more attention be paid to the role of impurities and

other heterogeneities in promoting nucleation, thus preventing the

attainment of the maximum undercooling.

2.3.- Metallic Glasses.

When the cooling rates during RSP are sufficiently large ,

metallic glasses can be formed instead of the usual crystalline

phases. The formulation of the critical conditions for metallic

glass formation has been worked out by Uhlmann(1983).

12



From the Johnson-Mehl-Avrami theory of phase transformation

kinetics, the relationship between the fraction of new phase formed,

X and the time t is
c

X _ (1/3) _ I R 3 t 4 (I)
C V

The nucleation rate

theory and is

I can be estimated from homogeneous nucleation
v

1.024

I _ N° _ exp ( - ) (2)
v v

(T/Tf)3((Tf -T)/Tf) 2

The growth rate can be estimated from crystal growth kinetics to be

L((Tf - T)/Tf)

R _ 0.2 ((Tf- T)/Tf) _ a( i- exp(- ) )

kB NA T

(3)

Finally , the jump frequency _ , can be related to the viscosity

of the melt through the Stokes-Einstein relationship, i.e.

k B T

3 T[ a 3 /'_

(4)
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Equations (1)-(4) above can now be used to construct temperature-

time-transformation diagrams for the prediction of the critical

conditions for metallic glass formation. The procedure used for the

construction of such diagrams is as follows:

(i) First , an arbitrarily small fraction crystallized (say

X* = 10-6 ) is selected and a temperature (below the solidus)
C

is chosen.

(ii) From Eqns(1)-(4) the time required for fraction X* to
c

form is calculated . The pair T , t is plotted on a scale of

T vs. log t .

(iii) Steps (i) and (ii) above are repeated for different T's

(but the same X* ) to obtain the complete T-T-T diagram.
C

Figure(l) shows the result of one such calculation for various

metallic systems. Based on the same ideas, Uhlmann estimated the

maximum thickness of sample that can be transformed into glass by

rapid cooling to be

i/2

yg _= ( _ tc) (5)

where t is shown in Fig.(1) for the case of AuGeSi.
C

Other factors that have been found to influence the formation

of metallic glasses are , heterogeneous nucleants and nucleation

transients . For a discussion of these factors the reader shoul see

the paper by Uhlmann mentioned above.
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Fig(2.3._).- Temperature-time-transformation (T-T-T) diagrams

for the crystallization of several metals from their undercooled

melts. Here X* = 10 -6 . From Davies(1976)
C
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2.4.- Solidification of Undercooled Melts.

Whena melt sample which has been undercooled starts to solidify,

the latent heat of solidification is released very rapidly at the

solid-liquid interface. The sudden release of this latent heat is

so fast that the outer surface of the sample may well be unable to

dissipate this energy. The liberated heat has to be retained in the

melt thus producing the phenomenonknown as recalescence. During

recalescence , the temperature of the solidification interface

rises quickly and can even reach the equilibrium value.

The solution of the coupled heat transfer - crystal growth

problem is not a simple task. Solution procedures usually start

by assuming a particular expression for the crystal growth rate

as a function of the interface temperature. The heat transfer

problem is handled essentially in the sameway as the usual Stefan

problem (see Sec(3A.2)). However , instead of the fixed , equilibrium

freezing temperature found in the classical Stefan problem, here

the interface temperature is variable.

Two growth rate - interface temperature relationships have been

the most popular, namely , the exponential law

R = R ( I - exp( L(T - Tf)/T Tf ) ) (I)o

and the linear law

R = R' (T - Tf) (2)o
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The solidification problem is described by the equations of the

classical Stefan problem in the weak (enthalpy) formulation (see

Sec (3A.2)),

_EI_ t = dlv( K grad T ) + rh (3a)

E = f (T) (3b)

However, instead of assuming the solid-liquid interface temperature

to be given by equilibrium considerations, it is assumed to be

dependent on the crystal growth rate according to either Eqn(1) or

Eqn(2) above .

The mathematical problem represented by either Eqns(1) and (3)

or (2) and (3) must be solved to obtain the temperature field inside

the sample, the freezing rate and the interface temperature. Various

methods have been proposed for the solution of this problem.

Boswell(1979) used a front-tracking technique (Sec(3A.2))to

solve Eqns(1) and (3) for the case of a pure metal solidifying

against a metal chill. An Iterative method was used to compute the

interface temperature. Although no details were given, he presented

a plot describing the effects of the heat transfer coefficient, of

the splat-chill interface temperature at the start of freezing and

of the materials properties.
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Levi and Mehrabian(1982) performed a detailed analysis of the

rapid solidification phenomena taking place during the freezing of

undercooled pure metal droplets. They solved Eqns(1) and (3) and

(2) and (3) in a suitable coordinate system using appropriate

boundary conditions. The most important parameters in their cal-

culations were the droplet diameter, the heat transfer coefficient,

the droplet surface temperature at the onset of nucleation, and the

kinetic growth coefficients R and R' in Eqns(1) and (2).
o o

Two heat transfer models were used by Levi and Mehrabian. The

simplest one assumed negligible temperature gradients inside the

droplet (Newtonian model). In the other model , this restriction

was relaxed. An implicit finite difference method was used to

solve the equations for this latter case. Although somewhat similar

results were obtained from both models, the one based on non-

Newtonian cooling provided more detailed information. The results

of their calculations were conveniently summarized in the form of

dimensionless enthalpy-temperature curves. The cooling and freezing

paths of individual droplets can be easily followed in such diagrams.

One example of such plots is included in Fig(l). We will describe

now how to read this diagram.

At the lower limit of slow cooling rates, the freezing path

followed by the droplets is close to the equilibrium freezing path.

In this case, when the droplet reaches the equilibrium freezing

temperature Tf , solidification at constant temperature starts

and continues until the entire latent heat has been withdrawn (

18
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Fig (2.4.1) .- Dimensionless enthalpy-temperature diagram showing

the various possible freezing paths of undercooled melts. From

Mehrabian (1982) .
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and the dimensionless enthalpy is equal to zero). This solidification

mode is called isothermal for obvious reasons.

At high cooling rates the other extreme possibility appears.

Namely , during cooling, an amount of energy at least equal to the

latent heat of fusion is withdrawn without nucleation taking place.

Once this is done the system can solidify without having to extract

any more heat from the sample. This is the so called isenthalpic

(or adiabatic) solidification mode.

A muchmore commonoccurrence is the intermediate case where

solidification starts below the equilibrium freezing point but

before the entire latent heat of solidification has been released.

Since nucleation is accompanied by the liberation of a certain

amount of heat, the droplet temperature will tend to rise until

the equilibrium melting point is almost reached. Solidification

can then proceed according to the isothermal mode. This self-

heating process is known as recalescence.

Twodistinct solidification regimes can thus be observed in

this the more general case. First, during recalescence, the

solidification interface moves rapidly into the liquid. The latent

heat is released so quickly that the external cooling is unable

to extract it thus resulting in the heating up of the droplet.

However, afterwards, when the droplet temperature has reached a

value close to the equilibrium melting point, the subsequent

freezing depends mainly on the rate of heat extraction through the

outer droplet surface .
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As expected, the microstructures of the products formed during the

two freezing stages in the general case, are markedly different. A

detailed review of the subject ,including many photomicrographs, has

prepared by Mehrabian.

More recently, Crowley(1984) studied the process of pulsed laser

annealing. The large heating and cooling rates produced by this

process induce undercooling, Sheproposed a fixed domain method with

partial front tracking for the solution of this problem. The

formulation is again identical to that of the conventional Stefan

problem except for the allowance of a variable solidification

interface temperature. Crowley produced a consistent and stable

algorithm free of oscillations. Her technique certainly warrants

attention from people studying the solidification of undercooled

melts.

In a related study, Dantzig and Davis(1978) used the samebasic

set of equations in combination with alternative mathematical

methods (matched asymptotic expansions with embedding) to analyze

the conditions for non-equilibrium phase formation during RSP.

They introduced the concept of the delay time as the time that

must elapse between the attainment of the equilibrium melting

point and the momentwhen the melt transforms into the equilibrium

product. By comparing the delay time with the times required for

non-equilibrium products to form, they derived a criterion for the

formation of the latter. The basis for comparison was the difference

in rates of the process of interfacial attachment and the process of
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heat conduction. The exponential law for crystal growth (Eqn(1)),

was solved simultaneously with the equations of the classical

Stefan problem modified by the presence of the delay time in the

Stefan condition.

The conclusion reached by Dantzig and Davis was that, if the

kinetic processes of atomic attachment at the solidification

interface are slow compared to the cooling rate, the expected

equilibrium crystalline phase may never form. Instead, a super-

cooled layer of fluid will grow from the chill until it reaches

macroscopic dimensions. The critical delay time separating

equilibrium from non-equilibrium products was calculated to be

_ - ( TN/ T ) (4)c

Equation (4) shows the expected result, that low nucleation

temperatures and high cooling rates facilitate the formation of

non-equillbrium products.

Clyne(1984) has presented a review of the numerical treatment

of RS processes in which undercoollng is an important consideration

and his paper can be consulted for additional information.

2.5.- Solute Redistribution During RS .

The phenomenon of solute redistribution during RS is still the
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subject of active research, Although manyaspects of it are still

obscure, important insight was gained from the model proposed by

Kattamis (see e.g. Flemings(1981)). This model suggests that the

freezing of undercooled alloys takes place according to the

following three stages:

Recalescence up to the solidus temperature TS ,

recalescence from TS up to the maximumrecalescence

(i)

(ii)

temperature T* , and

(iii) cooling from T* .

In the model it is also assumed that the diffusion of solute

is negligible during stage (i) but not during (ii). The segregation

during stage (iii) is described by the Scheil equation. Next we

present a brief summary of the equations of this model.

For stage (i) above, a heat balance can be written as

d f /d T = C /L (i)
s p

so that the fraction solidified once the solidus temperature is

reached during recalescence, fi is
s

fi
s (Cp/L)(T S - TN) (2) .

Since diffusion is neglected during this stage, the solute

concentration in the solid forming between TN and T S is

C = Cw = C*s s (3)
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For stage (ii), a solute balance can be written as

d f /d C I = (I - fs)/(C I - C_)S
(4)

Moreover, from the phase diagram, the slope of the solidus curve

is given as

m S = d T/d C*s (5)

The combination of Eqns(4) and (5) leads to

d fs/d C*s = (Cp/L) m s (6)

which can be integrated between fi and f to give
S S

C*s = C_ + (L/m S Cp)(fs _ fi)s (7)

Substituting now Eqn(7) into Eqn(4) and assuming that f --"
s

fi and that (i - f ) _ constant , leads to
S S

2

(CI - _ )(fs - i) - (fs - fis) ( L/(2 m S Cp)) = 0 (8)

Now, since C* = k C I when T = T* form the assumptionS

of local equilibrium at the solidification interface, the combina-

tion of Eqns(7) and (8) allows us to compute the fraction
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solidified when the maximumrecalescence temperature is reached,

fii .
S

Finally , stage (iii) is assumed to take place according to the

Scheil equation modified by the fact that the initial state is

given by f = fii . The resulting expression is
S S

k-i

C* = c*ii( 1 - ((fs - fii)/(l - fii)) ) (9)
S S S S

Where C *ii is the solute concentration in the solid side of the
s

solidification interface corresponding to the maximum recalescence

temperature T* . Because of the assumed negligible diffusion in

the solid, all the interfacial concentrations mentioned above are

basically equal to the final concentrations inside the solid, I.e.

C = C* .
S S

The model described above provided the first quantitative

explanation for the frequently observed solute rich cores of

dendrites found in samples produced by solidification of under-

cooled melts. The model has been refined and alternative stages

have been proposed. The thesis by Chu(1983) contains a detailed

description of the state of the art in this area and it should

be consulted for further information.
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2.6.- Morphological Stability During RS .

Since material properties are the main concern of the

metallurgist and because these properties are strongly related

to the microstructure, the prediction of the relationship between

the process parameters and the resulting microstructure has long

been an important consideration. This has also been the case in

RS research. The main question to be answered is if the solid-

liquid interface will grow in a planar fashion without micro-

segregation or will it break up into cells or dendrites, resulting

in segregated, multiphase structures.

The principle of constitutional supercooling provides a useful

guide to ascertain the growth conditions resulting in solidification

interface shape instability during alloy solidification. However,

research on RS has shown that the constitutional supercooling

principle produces entirely erroneous predictions in the extreme

case of large freezing rates. This deficiency has been removed by

the introduction of the theory of morphological stability (see e.g.

Coriell and Sekerka(1980) or Cahn et ai.(1980)).

The theory of morphological stability is based on a kinetic

analysis of the spatial and temporal behavior of perturbations

formed on the solidification interface. The starting point for

the analysis is the governing equations for heat and mass transfer

(see Sec(3A.l)). A perturbation-type linear stability analysis is

employed to derive the conditions for stability. The simplest
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model adopted for study is the directional solidification of a

binary alloy under a constant growth velocity and under local

equilibrium conditions at the solid-liquid interface.

The governing equations for heat and mass transfer must account

for the latent heat released during solidification and thus they

are basically the same as those of the Stefan problem for alloy

solidification (Sec(3A.2)), except for the incorporation of

interface curvature effects in the boundary conditions. First, the

temperature field , the concentration field and the interface shape

are written as the product of a constant term and a perturbed part,

i.e.

T = T exp( At + i(_x + _ y) ) (i)
o x y

C = C exp( A t + i(_ x + _ y) ) (2)
o x y

F = Fo exp(A t + i(_xX + C_yy) ) (3)

From the form of these expressions, it can be readily seen that the

interface will become unstable whenever the real part of _ is

positive for any real values of 00
x

to derive an equation for the quantity

and _ . It is possible
Y

A as a function of the

process parameters and the material properties by simply substi-

tuting Eqn(1)-(3) into the original governing equations. The use

of appropriate boundary conditions leads finally to the desired
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expression which will not be quoted here but can be found in the

references given. The main feature of this equation is , however,

that it is composedof three terms: a term involving thermal

effects, another involving surface tension effects and the last one

involving concentration effects. From the form of the equation

it is seen that the thermal and surface tension effects tend to

dampenthe interface shape perturbations and are thus stabilizing.

The concentration term , on the other hand, has always a de-

stabilizing effect. Whenthis last term is sufficiently large, the

interface may becomeunstable and perturbations will grow.

The stability equation mentioned above can be simplified con-

siderably if due account is taken of the extremely large thermal

"diffusivities of metallic melts by assuming it equal to infinity.

Under this assumption the stability equation becomes,

2 KI GI + R L_ -_ (Ks + KI) mL Gc S(As,k)
(4a)

where
GI -- (d T/d x) I (4b)

G = R C (k - I)/D I k (4c)c

S(As,k) i + (As/4k)(l - r2 + 2kr2) - (3 Al/2s r/2) (4d)

As = k Tf ( _/p L) R2/D_ mL Gc (4e)
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and the quantity r must be obtained by solving

3
r + (2k- i) r - (2k/A I/2 ) = 0 (4f)

s

Equations (4a)-(4f) provide a suitable representation of the

stability behavior of metallic melts for a wide variety of process

conditions. Two limiting cases exist, namely, for small growth

velocities , the constitutional supercooling criterion is adequate

and the stability limit is thus given by (Flemings(1974)),

GI/R = - mL C*s (i - k)/k D I (5)

On the other hand, for large growth velocities, the absolute

stability limit (obtained by making A = I in Eqn(4)) is a
s

good approximation, i.e.

Gc/R = k Tf ( _/_ L) m L R/D I (6)

Equation (6) indicates that much greater stability can be

expected at high freezing rates than that predicted from the

constitutional supercooling criterion. At least three factors

can explain this behavior. First, the capillary forces have a

strongly stabilizing effect, particularly on the short wavelength
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perturbations characteristic of high growth rates. Furthermore,

the deviations from local equilibrium at the solidification inter-

face and the peculiar temperature gradients resulting from the

freezing of undercooled melts also have a stabilizing effect.

A cenvenient way of presenting the results of the calculatiens

performed usin s Eqn(4) or (5) and (6) is by plottin s the _ik

liquid solute concentration against the growth velocity. The pairs

of values of these quantities corresponding to the critical

condition display the limit of stability. One such plot, for the

case of the AI-Cu system is presented in Fig(l).

The theory of morphological stability has been extended to

deal with other effects such as interfacial anisotropy, felt

undercooling, nonlinearities , and deviations from local

equilibrium at the solidification interface. For this latter case,

a corresponding stability equation has been derived using ideas

very similar to those described above. The analysis has provided

useful insight about the important phenomenaof solute partitio-

ning and trapping during RS . The references should be consulted

for details.

In this chapter we have reviewed several topics concerning the

mathematical representation of rapid solidification phenomena.

As can be inferred from the discussions on undercooling, metallic

glasses and the freezing of undercooled melts, the fundamental

processes of nucleation and growth played an important part in the

description of such systems. However, when kinetic considerations
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Fig(2,6.1_.- Interface stability diagram for the directional

solidification of AI-Cu alloys. Here G1 = 2* 104 K/m . From

Coriell and Sekerka(1980).
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of this type are tried for the description of the more complex

RSP systems found in practice, the mathematical problem becomes

very difficult. The non-constant growth rates, the poorly defined

boundary conditions and the existence of undetermined computational

domains, all contribute to the difficulties.

A very useful simplification is obtained when the kinetic

processes taking place at the solidification interface are assumed

to he so fast that they can be safely disregarded as the rate

controlling step of the overall process. Under these circumstances,

the macroscopic transport processes control the overall performance

of the system. In the following chapter we present some solutions

to the mathematical problem resulting from the neglect of the

atomic kinetic processes at the solidification interface. Only

one system ( the PFMS ) is dealt with in all detail and summary

comments are included for a few others.
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Chapter 3

THE MATHEMATICAL MODELING OF RAPID SOLIDIFICATION PROCESSING

As mentioned at the end of the previous chapter, the solution

of problems in RST can be facilitated if the atomic kinetic

processes taking place at the solidification interface are

assumed to be so fast that they can safely be disregarded as the

controlling mechanism for the overall process. This is equivalent

to assuming that the rate controlling processes are of a macro-

scopic nature. It is indeed fortunate that the assumption of

infinitely fast interfacial processes is justified for substances

constituted by small molecules (such as metals) in many cases of

practical interest.

In this chapter we undertake the task of simulating mathemati-

cally the behavior of some important RSP systems using the

assumption of infinitely fast interfacial processes. For the sake

of organization, in the first section we attempt a classification

of RSP systems which is capable of including every existing (and

non-existing) rapid solidification technique. We then proceed to

the formulation of the simplest macroscopic heat transfer models,

based on the assumption of Newtonian cooling conditions. These

simple models can be very useful to obtain first order estimates

of cooling and freezing rates in actual RSP configurations.
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Although the simple heat transfer models have been widely used, the

interpretation of the subtle variations found from process to process

requires models of greater accuracy.

In Sec(3.3) we describe the somewhatmore sophisticated models

resulting from the elimination of the assumption of Newtonlan

cooling. Since the details of these models are highly system-

specific, only one RSP system is dealt with in all detail while

the basic ideas required for the formulation of the models of other

important systems are the subject of much briefer presentations.

Wefocus our attention on the Planar Flow Melt Spinning System

(PFMS)and present enough detail,that the extension of our methods

to other RSP systems should be relatively straightforward

To facilitate the reading we have decided to separate background

information from that pertaining specifically to the modeling of

RSP systems. However, for completeness , the background informa-

tion has been put in appendices at the end .

3.1.- Rapid Solidification Processing Systems.

A large variety of devices have been constructed and used for

the production of rapidly solidified materials. Most of them,

however, have been designed having in mind the main requirement

for obtaining high cooling and freezing rates, namely, the

existence of a small section in at least one spatial direction.
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Jones(1982) has proposed a classification of RSP systems based

on somekey features of the various processes. He considers RSP

systems to be divided into: (i) Spray methods (involving the

complete disruption of the continuity of the melt), (ii) chill

methods (where the melt is thinned instead of being disrupted),

and (iii) weld methods (where a high energy beammelts the surface

of a bulk object). Webelieve that the classification presented

in Table(l) below, which is based on Jones' , is more comprehensive

and it is the one we will use in our discussion.

Actual, representative examples of all the categories listed

in Table (i) can be found in Table (2) together with references

where the actual devices are described. To aid in the reading of

Table (2) , Fig(l) shows schematically someof the most important

processes included in this table. Interestingly enough , most of

the seemingly entirely different processes included in Table (2)

have important features in common.The basic physical phenomena

involved with the performance of RSP systems are described in

Table (3). A glance at this table readily shows that the most

important physical processes taking place during RSP operations

are: (i) The fluid flow phenomenaassociated with the spreading,

squeezing, thinning and breaking up of molten metal samples, and

(ii) the energy transfer processes governing the cooling and the

solidification of such samples.

It should be noted that even though very much the samephysical

processes are at work in all RSP systems, subtle differences in

........... _.......... _Li=_=_ in Lne characteristics of
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Table (3.1.1__).- Rapid Solidification Processing Systems

I) Melt Fragmentation Processes

a)

b)

Fragmentation produced by moving solids

Fragmentation produced by moving fluids

II) Splatting Processes

a)

b)

Splatting to produce particulate material

Splatting to produce continuous material

III) Direct Quenching Without Fragmenting or Splatting

IV) Melting and Quenching of Thin Surface Layers

V) Liquid Dynamic Compaction and Spray Deposition
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Table (3.1.2).- SomeExamplesof RSP Systems

la) Melt Fragmentation Produced by Moving Solids

i) Rotating Cup or Dish

2) Rotating Perforated Cup

3) Rotating Electrode Process

4) Impact Disintegration

5) Vibrating Electrode

6) Melt Drop Technique

7) Twin Roll Technique

8) Single Roll w/Serrated Surface

9) Melt Extraction w/Serrated Wheel

i0) Single Roll Atomization

Glickstein et ai(1978)

Daugherty(1964)

Champagne& Angers(1984)

Schmitt(1979)

Ruthardt & Lierke(1981)

Aldinger et ai(1977)

Singer et ai(1980)

Carbonara et ai(1982)

Pond et ai(1976)

Narasimha & Sekhar(1984)

Ib) Melt Fragmentation Produced by Moving Fluids

i) Water Atomization

2) Subsonic GasAtomization

3) Ultrasonic Gas Atomization

Tallmadge(1978)

Beddow(1978)

Grant(1983a)
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Table (3.1.2__).- (contd.)

lla) Splatting for Particulates

i) Gun-Ski jump Device

2) Piston and Anvil Device

3) Injection Chill Mold

4) Isolated Droplets on Chill

5) Rotating Impactor

Duwez& Willens(1963)

Strachan(1967)

Hinesley & Morris(1970)

Madejski(1976)

Predel(1978)

llb) Splatting for Ribbon or Sheet

i) Chill Block Melt Spinning

2) Centrifugal Melt Spinning

3) Planar Flow Melt Spinning

4) Melt Drag

5) Twin Roll Quenching

6) Melt Extraction

Liebermann & Graham(1976)

Chen & Miller(1976)

Fiedler et ai(1984)

Hubert et ai(1973)

Murty & Adler(1982)

Robertson et ai(1978)
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Table (3.1.2--).- (contd.)

III) Direct Quenching Without Fragmenting or Splatting

i) Melt Extrusion

2) Taylor Wire Process

3) Free Flight Melt Spinning

Shepelsky & Zhilkin(1968)

Manfre et ai(1974)

Kavesh(1976)

IV) Melting and Quenching of Thin Surface Layers

i) Laser Processing

2) Electron BeamProcessing

Breinan & Kear(1983)

Mawella(i984)

Liquid Dynamic Compaction and Spray Deposition

i) Liquid Dynamic Compaction

2) Plasma Deposition

Singer & Evans(1983)

Apelian et ai(1983)
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Fig(3.1.1_).- Schematic Representation of Some Typical RSP

Systems. See also Table(3.1.2).
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Table (3.1._).- Basic Physical Processes During RSP

la) Melt Fragmentation Produced by Moving Solids

i) Fluid Flow Phenomena

a) Impact and Spreading of Melt on Moving Solid

b) Melt Thinning and Acceleration

c) Melt Fragmentation Proper

i) Direct Drop Formation

ii) Ligament Formation

iii) Film Formation

d) Bursting of Melt by Impactor

e) Capillary Wave Atomization

f) Cavitation Inside Melt

g) Shearing of Melt by Serrated Disk

2) Heat Transfer Phenomena

a) Cooling

b) Freezing
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Table (3. i. 3__).- (contd.)

Ib) Melt Fragmentation Produced by Moving Fluids

i) Fluid Flow Phenomena

a) Melt Thinning

b) Growth of Disturbances on Melt Surface

c) Formation and Tearing of Ligaments from Melt Sheet

d) Growth of Disturbances on Surface of Ligaments

e) Formation and Separation of Droplets

f) Droplet Breakup

2) Heat Transfer Phenomena

a) Cooling

b) Freezing

lla) Splatting for Particulates

i) Fluid Flow Phenomena

a) Impact and Spreading of Melt on Substrate

b) Squeezing of Melt between Two Substrates
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Table (3.1.3).- (contd.)

2) Heat Transfer Phenomena

a) Cooling

b) Freezing

IIb)

1)

Splatting for Ribbon or Sheet

Fluid Flow Phenomena

a) Ejection of Melt from Nozzle

b) Impact, Adhesion and Spreading of Melt on Moving Chill

c) Impact, Adhesion , Spreading and Squeezing of Melt

between Nozzle and Moving Chill

d) Squeezing of Melt betwee Two Moving Chills

e) Capillary Flows

2) Heat Transfer Phenomena

a) Cooling

b) Freezing
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Table (3.1.3--).- (contd.)

III) Direct Quenching Without Fragmenting or Splatting

I) Fluid Flow Phenomena

a) Stabilization of Liquid Metal Jet

b) Velocity Relaxation in Melt Jet

2) Heat Transfer Phenomena

a) Cooling

b) Freezing

IV) Melting and Quenching of Thin Surface Layers

i) Fluid Flow Phenomena

a) Motion on Free Surfaces

b) Surface Tension Driven Flows

c) Natural and Forced Convection

2) Heat Transfer Phenomena

a) Cooling

b) Freezing
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Table (3.1.3).- (contd.)

v) Liquid Dynamic Compaction and Spray Deposition

i) Fluid Flow Phenomena

a) Impingement, Spreading and Mixing of Falling Droplets on

either Shallow Melt Pools, Mushy Surfaces or Solid Droplets

2) Heat Transfer Phenomena

a) Cooling

b) Freezing
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the products of processing. The varying degrees of interaction

between the fluid flow and the heat transfer phenomenain the

various processes account for the observed differences in process

performance. For example, although a molten jet is thinned during

both gas atomization and melt spinning, complete breakup to form

powder is the final objective in the first case, while the forma-

tion of a continuous ribbon is desired in the latter. It is, thus,

the interplay between spreading and thinning rates on the one hand

and cooling and freezing rates on the other that accounts for the

wide variety of existing RSP systems .

As expected, the different techniques will produce rapidly

solidified products with structures (and properties) peculiar to

them and thus, widely different microstructures may be found in

samples of the samematerial produced by different techniques.

This complexity makes necessary a case by case study of the

various processes. Fortunately, despite the idiosyncracies of the

different RS techniques, the same fundamental principles of

continuum mechanics are applicable to all of them. This fact

provides the unifying feature for the mathematical modeling of

RSP systems.

3.2.- Mathematical Models for RSP Systems. Newtonian Cooling.

Mathematical models based on heat transfer considerations have
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long been used to estimate the cooling and freezing rates obtained

during RSP. Because of their inherent simplicity, lumped parameter

models were almost always invariably adopted. The main assumption

involved in all of these early models was the neglect of temperature

differences across the sample thickness , i.e. Newtonian cooling

conditions. Mathematical models of heat transfer and solidifi-

cation based on the assumption of Newtonian cooling always lead

to ordinary differential equations which are relatively easy to

solve.

In this section we describe the formulation and the solution

of mathematical models of RSP systems based on the assumption

of Newtonian cooling. Becauseof their simplicity, the models can

be very general. Furthermore, to avoid the drudgery of hand

calculating the cooling and solidification rates we have included

(in Ch. 5) a computer program capable of doing all the necessary

computations.

In the description which follows we first present the for-

mulation for the processes resulting in separated particles and

then go on to describe the formulation for those processes

resulting in ribbon, sheet or wire.

a) Lumpedparameter models for discrete splats

Let A and V be , respectively, the splat surface in contact

with the heat sink and the total volume of the sample (Fig(l)). An

overall heat balance for the splat is composedof three separate
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2 Z

(a)

(b)

(c)

Fig(3.2.1_).- Schematic representation of RSP systems used for

heat transfer calculations according to the lumped parameter model.

(a) Sphere , (b) cylinder, and (c) slab.
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stages:

(i) Cooling of the melt downto the melting point

V C dT/dt = - h (T - T_ ) A (I)p

(ii) solidification of the sample at constant temperature Tf

V_ L df /dt = h (Tf -T_ ) A (2)s

and

(ill) cooling of the solidified sample

V Cp dT/dt -- - h (T - T_ ) A (3).

Integrating Eqns(1)-(3) between suitable limits produces the

following expressions for the temperature and the cooling and

freezing rate;

For stage (i)

T = (Tp - Too ) exp( - h A t/Vp C ) + T (4a)p ,o

dT/dt = - (Tp - To )(h A/Vp Cp) exp( - h A t/Vp Cp) (4b)

For stage (ii)

fs " h A (Tf - T_ )(t - tss)/V p L (5a)
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dfs/dt = h A (Tf - T_ )/V_ L (5b)

And for stage (iii)

T = (Tf - T,o ) exp( - h A (t - tes)/V _ C ) + T dP
(6a)

dT/dt = - (Tf - T,o )(h A/V_ Cp) exp(- h A (t - tes )/V20 Cp
)

(6b)

In these expressions t is the time for the start of freezing
SS

and t is the time for the end of solidification.
es

If we write Z for the radius of the sphere or of the

cylinder or for the half-thickness of the slab in Fig(l), the

following relationships hold,

A/V = 3/Z for the sphere (7a)

A/V = 2/Z for the cylinder (7b)

A/V = I/Z for the slab (7c)

Moreover , the solidified thickness at any given time can be

obtained from the fraction solidified as follows,

Z

m

Z (i - fs ) (8)
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where m takes the values of 1/3 , 1/2 , and i , respective-

ly, for the sphere, the cylinder and the slab. We note that all

these relationships were derived for the situation in which the

heat extraction takes place through all sides of the sample.

However , the heat lost through the ends of the cylinder or

through the edges of the slab has been neglected.

Equations (4)-(8) can be used to estimate cooling and freezing

rates in a wide variety of RSP systems. The FORTRAN program

RSPNN presented in Sec(5.1) below has been designed to perform

these calculations.

b) Lumped parameter models for continuous processes

Let H(x) be the local melt thickness (see Fig(2)). In this

case we perform the overall heat balance on volume elements of

size _x along the downstream direction. These volume elements

are assumed to be moving in a plug flow fashion. Proceeding as

before, after integration , the following expressions for the

temperature and the fraction solidified can be obtained,

and

m

Tx +_x -- (Tx - T, ) exp(- h A _x/Vp Cp Vx ) + _

(9)

f -- f
s s +
x +_x x

h A (Tf - T, ) _x/Vp L _x (i0)
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H Melt

• ,' , . . .Solid

/ / /_ / / / / z / I /

Substrate

(a)

x

Fig(3.2.2_).- Schematic representation of RSP systems used for

heat transfer calculations according to the lumped parameter model.

(a) Sheet cooled from one side, and (b) from two sides
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where the subindex

direction corresponding to a given T or a given f
$

From geometrical considerations again , the quantity A/V

given by

x denotes the location along the downstream

is

A/V = 4/H for the cylinder

and

A/V = 2/H

A/V = I/H

for the sheet cooled from two sides

for the sheet cooled from one side.

Moreover, the relationship between the actual solidified thickness

and the local fraction solidified is ,

1/2

Ys = (H/2)(I - (i - fs ) ) for the cylinder

and

Ys (H/2) fs

Ys H fs

for the sheet cooled from two sides

for the sheet cooled from one side.

Equations (9) and (i0) must be applied repeatedly, marching

forward along the downstream direction to obtain cooling and freezing

profiles.

The single most important adjustable parameter in the above

equations (as well as in those to be presented in Sec(3.3) below),

is the heat transfer coefficient. The value of this coefficient

directly determines the cooling and freezing rates of the rapidly
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solidified sample. Since these rates are directly related to the

structure of the material, the availability of realistic values of

h is a question of great importance. The use of heat transfer

coefficients to describe the complex heat transfer phenomena which

take place at interfaces between phases is justified as long as

there are no more rigurous means of describing such processes.

For the convenience of the reader who wishes to perform heat

transfer calculations similar to the ones reported in this thesis,

and also for comparative purposes, we have compiled in Table (i)

a llst of suggested values of the heat transfer coefficients for

a wide variety of casting/solldificatlon processes. The sources

have also been included.

In the past, thermal and mlcrostructural measurements have

been employed for the estimation of h . We now suggest the use

of the coefficients in Table (i) to calculate thermal responses

and the resulting microstructures .

3,3.- Mathematical Models for RSP Systems.Non-Newtonian Cooling.

In some cases , the assumption of Newtonian cooling conditions

can be grossly inadequate, It may be that the temperature gradients

across the splat just cannot be neglected. This is particularly

true for those RSP systems whose performance strongly depends

on the existence of large temperature gradients across the splat.
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Table (3.2.1).- Heat Transfer Coefficients Typical of Casting-

Solidification Processing Operations.

System

Rotating Dish

Atomization of

IN-100 (P&W)

Sample Size h

(_m) (cal/cm2s°C)

20 - 500 0.2 - 700

Source

Glickstein

et ai(1978)

Gun-Ski jump

Splat of AI on Ni

Predecki

0.i - 5 2.7 - 6.8 et ai(1965)

Piston & Anvil

Splat of AI on Fe

Harbour

76 0.4 - 5 et ai(1969)

Die Casting

AI on Steel

Mehrabian

1600 1.9 (1982)

Metal Splat on

Metal Substrate
not given 2.4 - 24 " "

Atomization of AI

(Radiation Cooling) i00 0.0013 Jones(1982)

Atomization of AI

(Convection Cooling) I00 0.24 - 2.4 " "

Gun on Flat Substrate

AI Splat

Gun on Flat Substrate

Fe Splat

I - 140 2 " "

i - i00 i - i000 Ruhl(1967)
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Table (3.2.1__).- (contd.)

System Sample Size

(item)

h

(cal/cm 2 s°C)

Source

Gun on Flat Substrate

AI-Cu Splat on Glass 25 - i00 0.956 Scott(1974)

Piston & Anvil

AI-Si Splat 25 - 50 24 - 215
Williams
& Jones(1975)

Gun on Flat Substrate

AI Splat i00 0.95 Jones(1971)

GunMethod Fe-Ni

Glass Splat 0.I - 0.3 24 - 240 Davies (1978)

Twin Roll Fe-Ni

Glass Splat 40 2.4 - 24 T! Y!

Chill Block MS

Fe-Ni Glass Splat 20 2.4 !1 !!

Chill Block MS

Al-Si & Nimonic Splats 20 - 50 1.67

Vincent

et al (1980)

Conventional Cast

AI & Pb on Fe 20000 0.027 Sully(1976)

Continuous Cast

Steel on Water

Cooled Cu

50 000 0.03 Hills (1965)
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Table (3.2.1--).- (contd.)

System

Free Flight MS

Metglass on Brine

Sample Size

(r m)

I00

h

(cal/cm 2 s°C)

0.04

Source

Kavesh(1976)

Planar Flow MS

Fe-B Glass 20 - 40 12 - 50
Huang &
Fiedler(1981)

Atomization of

Undercooled AI 50 0.0678
Gill
et ai(1984)

Melt Extraction

Fe-Ni Wires 25 - i000 0.i
Robertson
et ai(1978)

Direct Chill

Horizontal

Continuous Casting

AI, Pb, Sn, and Zn

20 000 0.024 - 0.86 Weckman&
Niessen
(1984)

Atomization

Melt Spinning

i0

25

2.4

2.4

Cohenet al
in Mehrabian
et ai(1980)

11 I!

Self-Quenching i0 very large 11 11

Rod Casting, AI 50 000 0.05 Davies &

w=_Lby _914)
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The avoidance of the Newtonian cooling assumption can lead to

additional , important results which cannot be obtained from the

simpler models. Moreover, there is the hope that the fewer

approximations that are introduced into the model the closer to

reality its predictions will be.

The opposite extreme to Newtonian cooling is to assume that the

splat is in perfect thermal contact with the chill. This condition

is known as ideal cooling. From the well known solutions to heat

conduction problems under ideal cooling conditions (e.g. Carslaw

and Jaeger(1959)) and from Schwarz's solution to the solidifica-

tion problem (Sec(3A.2)), Jones derived approximate expressions

for cooling and freezing rates under ideal cooling conditions.

These are (see Jones(1982)):

and

dT/dt = B/x2 (1)

R -- dx/dt = B'/x (2)

where x is the dista_ce_inthe slab,from the chill and B and

B' are functions of the relevant temperature intervals and of the

material properties.

It is perhaps not surprising that neither the assumption of

Newtonian cooling nor the one of ideal cooling represented by

Eqns(1) and (2) seemto be able to accurately represent observed

behavior. This means that even though the thermal contact at the
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splat-chill interface is far from perfect, the temperature gradients

across the splat cannot be neglected. This, most frequently found

cooling regime, is conveniently called intermediate cooling.

In the sequel we present the details of the formulation and

the solution of a model of a typical RSP system working in the

intermediate cooling regime. In the description we will concentra-

te on the PFMS system since the bulk of our calculations were

performed for that configuration. However, summarycommentson the

modeling of other RSP systems are also presented. Wehope our

methods to be sufficiently general as to allow their application

to any other RSP system. Thus, after a detailed description of

the model of the PFMS system and of the results obtained from it,

we discuss somepoints about the Twin Roll RS system, the Piston

and Anvil system, the Melt Fragmentation processes and the systems

based on Surface Heating and on Spray Deposition.

3.3.1.- A Model of the Planar Flow Melt Spinning Process.

The Melt Spinning (MS) process is one of the most commonly

used methods of RST . The principle of the technique is very

simple. A sample is melted inside a crucible and then a sudden

pressure surge iaiapplied to produce a thin liquid jet from a

nozzle at the bottom of the crucible. This jet is in turn direc-

ted towards the surface of a rapidly moving wheel. On impingement,
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the liquid Jet transforms into a small puddle. Finally, a thin solid

ribbon is dragged from underneath the puddle by the moving wheel.

Two main variants of the MS process exist, namely the Chill

Block and the Planar Flow systems. The most significant difference

between the two techniques is the detailed nature of the puddle

formed at the point of impingement of the molten jet on the

wheel. The arrangement used in the PF process restrains the puddle

and promotes its stability. In Fig(l) we show schematic

representations of the melt puddles formed, respectively , in the

CBMS and in the PFMS process. It can be readily seen that in

the latter the nozzle is brought into close proximity with the

wheel.

In the following pages we present our mathematical model of the

PFMS process. We start by describing its formulation, then we

discuss the solution methodology employed and conclude with a

description of the results and some recommendations.

a) Formulation of the Model.

Because of its potential applications, the MS process has

received a great deal of attention from the RS community. Most

of the studies to date, however , have been concerned with the

CB process whereas the interesting PF process has been left

somewhat aside. Interestingly enough, the peculiar arrangement

used in this latter system produces a fluid flow configuration

very similar to those observed in Lubrication Technology
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f_/f / / // / / /

ozzle

Puddle _ Ribbon

t / / / / / / / / / // _' _/ /,,/

Moving Substrate

(a)

S " I l "I S I / / / I I I/ Ill / II /" "I F/

Fig(3.3.1.1_).- Schematic comparison of melt puddle shapes for

the (a) CBMS and (b) the PFMS systems.
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systems. Since the two MS processes are closely related, we will

start this section by reviewing previous modeling work in this area.

Kavesh(1978) performed one of the first quantitative studies of

the effects of changes in the process parameters on the properties

of the products of CBMS. Using basic concepts from boundary

layer theory he constructed representations of the fluid flow

and the heat transfer phenomenataking place in the puddle.

Based on the well known smallness of the Prandtl number values

for metallic melts, he concluded that the mechanismresponsible

for the final ribbon thickness emerging from the puddle was the

rate of heat transport out of the melt and into the chill. Kavesh

also presented closed form expressions relating the geometry of

the melt spun ribbons to important process parameters such as the

melt flow rate and the wheel velocity. These relationships have

been extensively used as a basis for many subsequent empirical

studies of the process (e.g. Charter et ai(1980)).

Anthony and Cline(1978) also employed ideas from boundary layer

theory in the vorticity-stream function formulation. They obtained

closed form expressions demonstrating that the layer inside the

puddle in which most of the temperature change takes place was

many times larger than the shear layer due to wall induced

vorticity.

den Decker and Drevers(1980) used again boundary layer theory,

this time combined with the equations of phase change kinetics by

nucleation and growth and incorporating the temperature dependence
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of the melt viscosity. They were able to compute both the final

ribbon thickness and the crystal to glass ratio in the resulting

ribbons as a function of the process parameters. In their conclu-

sions, they agreed with the results of previous researchers in

that the computed thermal boundary layers were much thicker than

the corresponding momentumboundary layers.

Katgerman(1980) modeled the flow in the puddle using the x-

component of the momentumbalance equation in a coordinate

system fixed to the solidification interface. He also used

approximate closed form expressions to represent the freezing

and computed the thicknesses of the momentumand thermal boundary

layers for several cooling conditions at the splat-wheel inter-

face. He also concluded that the transfer of thermal energy

played a predominant role in the determination of the final ribbon

thickness.

Vincent et ai(1982) reviewed work on the modeling of MSand,

using also concepts from boundary layer theory, concluded that

momentumtransport was the dominant mechanismcontrolling the

final ribbon thickness. A similar conclusion was reached by

Takeshita and Shingu(1983) who incorporated the temperature

dependence of the melt viscosity in their calculations of flow

and heat transfer using the equations of boundary layer theory.

Three main points emerge as a result of the preceding review

of the literature. First , although all investigators have used

basically the sameequations in one form or another, there is
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no agreement as to the true mechanismcontrolling the final ribbon

thickness. Momentumtransport, heat transfer, and mixed mechanisms

have all been proposed. Secondly , no distinction has been drawn

between the CB and the PF processes , and the bulk of the

simulations have been done for the first of these. Webelieve that

the two processes , although very similar at first sight, possess

however somefeatures which warrant separate treatments. Finally

we note that most of the previous models of the MS process have

dealt with metallic glasses thus avoiding the problems associated

with therelease of the latent heat during solidification.

Miyazawaand Szekely(1981,1979) have used a different approach

to model other, somewhatrelated RSP systems. They have chosen to

represent the flow phenomenataking place inside the splat during

RS by a modified form of the Navier-Stokes equations in which

the inertia forces are considered negligible compared with the

viscous and pressure forces. The sameapproach has long been used

by mechanical engineers to represent systems in which moving solid

surfaces are separated by thin fluid layers and the resulting

equations constitute the basis of the so called theory of

lubrication. The use of lubrication theory to represent fluid

flow in RSP systems was considered appropriate since small

sample sizes in at least one spatial direction are one of the

important features of these systems. In this sense they are

analogous to the systems encountered in ball bearings.

Encouraged by the results reported by Miyazawa and Szekely

64



for the piston and anvil and for the twin roll devices we decided

to proceed further and investigate the use of lubrication theory

for the representation of the flow behavior in the puddle of a

PFMS system producing crystalline ribbons.

The governing equations for fluid flow and heat transfer-

solidification subject to the assumption of negligible inertia

forces are (see Sec(3A.I)-(3A.3));

The equation of continuity

div V = 0 (1),

the equation of motion

div_grad _) = grad P (2),

the differential energy balance

V " grad E -- div( K grad T ) (3),

and the enthalpy-temperature relationship

r Ef + (T -TL)_ C T > TL

p

= Ef((r - TS)/(T e - r S)) , TSL_r _- r e

(r - TS)p C T _ TSp

(4).
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Equations (1)-(3) may be simplified still further for the case

of the schematic PFMS system shown in Fig(2) . So , by introducing

the following simplifying assumptions,namely ; (i) planar flow

conditions, (ii) negligible y-momentumcomparedwith the x-

momentum,(iii) velocity derivatives along the downstream

coordinate negligible compared to derivatives across the puddle

thickness, (iv)convectioh in the y-direction negligible compared

to convection in the x-direction and viceversa for conduction, and

(v)physical properties constant independent of temperature ,

Eqns(i)-(3) become,

H

Q/w = f Vx dy -- (Qs + QI)/w (la)
o

_ d2Vx/dY 2 = dP/dx (2a)

V dE/dx
x

K d2T/dy 2 (3a)

Equations (la)-(3a) and (4) must now be solved subject to

appropriate boundary conditions. The ones we have chosen , again

based on the schematic of Fig(2) are; (i) partial slip or no-

slip at the splat-wheel interface, (ii) melt flow rate constant

and given, (iii) heat transfer at the splat-wheel interface

specified by a heat transfer coefficient, (iv) heat flow through

the top surface of puddle negligible compared to the heat flow
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through the wheel, and (v) at the melt-gas interface downstream,

the shear stress is so small that can be neglected but the normal

stress is determined by the capillary pressure given by Laplace's

equation.

We now briefly comment on the appropriateness of both the

assumptions and the boundary conditions. Assumptions (i)-(iii)

are considered adequate since the geometry of the system involves

one characteristic spatial dimension which is much smaller than

the other two. Assumption (iv) is plausible in view of the

characteristic ability of molten metals to transmit heat more

readily than momentum (small Prandtl number). Assumption (v)

is also justified since we are interested in events happening

inside the puddle and temperature extremes there are never

greater thantwo or three hundred degrees.

Boundary condition (i) is used mainly to remove the stress

singularity that it is known to result from the use of the no-

slip condition at the line of contact melt-gas-wheel upstream.

Condition (ii) is appropriate since the melt flow rate is

ultimately specified by the imposed pressure in the crucible.

Condition (iii) is adopted mainly as a means of making up for

our ignorance about the details of the complicated events taking

place at the splat-wheel interface. However, the best available

values of h have been used. Boundary condition (iv) is

justified as can be readily checked by comparing the heat losses

due to radiation from the top with the heat lost by contact with
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the wheel. Finally, condition (v) has been adopted to be able

to predict the exact location of the downstream meniscus and it

is based on the ideas of capillary hydrodynamics as described,

for example, by Levich(1962).

The complicating effects introduced by the consideration of

capillary phenomenawarrant further comment. As can be seen in

Fig(2), the top surface of the puddle detaches itself from the

nozzle at somelocation along the downstream direction. After

this, the top surface of the puddle becomes free in the sense

that it is no more restrained by the solid nozzle lip. Moreover,

this free boundary adopts a shape determined both by the capillary

effect of the surface tension and by the solidification phenomena

taking place underneath the puddle. Wemust note that, since the

melt flow rate is constant, the amount of material passing through

any given section at constant x is the sameregardless of the

particular location selected.

The solution of the complete free surface problem is a complex

matter. The addition of solidification effects would make the

problem intractable if it were not for the introduction of suitable

simplifying assumptions. Following Levich, we consider lubrication

theory still valid after the detachment point and assume that the

pressure acting across the puddle is given by Laplace's equation.

After somemanipulation (Sec(3A.3)), the following expression for

the shape of the free surface is obtained ,

d3Hlldx 3 = (3_I0"_H_)((Ql/W) - Vrx HI ) (5)
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Wehave now completed the mathematical statement of the problem.

What we have to do is to solve Eqns(la)-(3a),(4) and (5) simultaneous-

ly subject to the boundary conditions mentioned above expressed in

mathematical form. In the following section we describe our method

of solution of this problem.

b) Solution Procedure.

Wenow describe the main features of the numerical algorithm

we have used to solve the equations representing our model of the

PFMS system. First, we note that for a given thickness of the

solidified layer underneath the puddle, Eqns(la) and (2a) may be

readily integrated to produce closed form expressions for V andx

for P as function of the process parameters and of the material

properties. However, in the region where the free surface forms

after detachment from the nozzle, the thickness of the puddle is

unknown in advance and must be calculated by solving Eqn(5) before

we can proceed to integrate Eqns(la) and (2a) to get V and P .
x

Once V is known, its average across the puddle thickness
X

can be calculated and then Eqns(3a) and (4) can be solved to give

the cooling and freezing rates at every point in the puddle. Since

no closed form analytical solutions exist for this solidification

problem, we resort to numerical methods. The simplest explicit

finite difference scheme has been selected to perform this

calculation. The scheme can be proved to be stable and consistent
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as long as the step lengths satisfy the stability condition,

A x I Vx( _y)2 = 112 (6)

Equation (5) must also be solved numerically. We have found

thmt the transformation of Eqn(5) into an equivalent set of

three ordinary differential equations of first order which _re

then solved using a simple Euler forward scheme to advance the

solution in the downstream direction, produces an algorithm

which is both stable and consistent.

In summary, the complete set of steps we have used to solve

the equations representing our model of the PFMS process is

as follows:

(i) Before the detachment point, Eqns(la) and (2a) are solved

to obtain V and P . After detachment, however, Eqn(5) is
x

solved first, advancing one step in the downstream direction to

find the location of the free surface and then Eqns(la) and (2a)

are solved for V and P . In both cases , V is also
x x

computed.

(ii) Equations (3a) and (4) are then solved to find T(x,y) and

the location of the solidification interfase Ys

(iii) The puddle is swept in the downstream direction following

the procedure indicated in (i) and (ii) until the free surface

encounters the solidification interface. This is considered to

be the end of the puddle. The point of intersection defines the

final ribbon thickness.
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Wehave constructed a FORTRAN computer program to perform

the calculations indicated above. A typical run in the IBM 360

computer of the IPS at MIT using 31 grid points in the y-

direction and about 5000 in the x- direction, required

approximately 60 s of CPU time. The main criterion for the

acceptance of the results was the satisfaction of overall mass

conservation and thus only the results of runs for which this

was true down to less than 0.1% were accepted. The program

contains many comments which should make it easier to understand

and it may readily be adapted into other computers having

FORTRAN compilers. In the next section we describe and discuss

the results that can be obtained with our program. The program

listing itself, by the way, is included in Sec(5.4) below.

c) Description of Results and Discussion.

We now present a summary description of the results that can

be obtained with our model, The input data for the calculations

have, for the most part, been kindly provided by G.E.-NASA.

Additional data have been taken from the literature and, when

values were lacking, the best available estimates were used.

The material under study was a Ni-base superalloy and the whole

set of input data is shown in Table(l) below.
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Input Data for the Calculations of the PFMS

Nozzle Breadth

Crucible-Wheel Gap

Slot Width

Wheel Radius

Wheel Velocity

Ejection Pressure

Melt Flow Rate

Pouring Temperature

Puddle Length

Ribbon Thickness

Melt Density

Melt Viscosity

Melt Surface Tension

Melt Specific Heat

Melt Thermal Conductivity

Solidification Range

Latent Heat of Fusion

Heat Transfer Coefficient

Dynamic Contact Angle

Initial Meniscus Curvature

0.064 cm

0.030 cm

0.635 cm

12.7 cm

1200 rpm

1.38 * 105 g/cm s2

3
3.86 cm /s

1440 °C

0.29 cm

0.0038 cm

8.5 g/cm 3

0.046 g/cm s

1778 g/s 2

0.15 cal/g °C

0.0717 cal/cm s °C

1315 - 1335 °C

71.7 cal/s

i - 2 cal/cm 2 s °C

o
160

-I
6.89 cm
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Figure (3) shows the computed temperature field corresponding

to what we have called the typical data set (see Table (i)). It

should be noted that in Fig(3),as well as in Figs(2) and (4),the

vertical scale has been enlarged considerably for clarity of

representation. In reality, for the horizontal dimension shown,

the vertical scale iS about I/i0 to 1/20 of the size shown in

these figures. This shoul give an idea of the size scales in-

volved in the problem. Moreover, this should makeclear that the

isotherms in reality lie almost parallel to the surface of the

substrate, and that most of the temperature change takes place

inside a relatively thin layer close to the bottom surface of the

puddle.

Other noticeable features in Fig(3) are as follows. First, as

can be expected from the assumption of imperfect thermal contact

at the splat-wheel interface, freezing does not start immediately

on impingement at the point where the gas , the melt, and the

wheel meet forming a line of contact. Moreover, when instead of

a heat transfer coefficient weuse a closed form expression

representing ideal thermal contact (i.e. h -_ _), solidification

always started at the contact line. The resulting ribbon

thicknesses , however, proved to be in all cases physically

unrealistic since the solidified layer grew apparently too fast.

Consistently throughout this work, the physically more satisfac-

tory results were obtained whenthe assumption of non-ideal

thermal contact at the splat-wheel interface was used.
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Also seen in Fig(3) is the inflexlon point appearing on the

isotherms as they approach the free surface. This change in

curvature , corresponding to an increased cooling rate, coincides

with the formation of the free surface after detachment. Apparent-

ly, the continuously diminishing puddle thickness observed after

detachment has an influence on the thermal behavior in the form

of increasing cooling and freezing rates. This observation leads

to predictions about the variation of mlcrostructure across the

ribbon thickness which are in reasonably good agreement with

measurements as described in more detail below.

Figure (4) illustrates the computed streamline pattern

corresponding to the same typical run. We recall that when the

values of the stream function on every pair of neighbouring

streamlines differ by the same amount from one pair to the other,

it is possible to perceive the variations in the magnitude and

the direction of the velocity over the domain at a glance since

the same mass is flowing between any pair of such lines. The

existence of two characteristically different flow domains inside

the puddle is readily noted. The closely spaced streamlines

close to the moving wheel indicate the existence of large

splat velocities there. The circulating streamlines lying on top,

on the other hand,show that there is a large region of slowly

recirculating flow centered approximately in the middle of the

puddle at about the point of detachment.
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3.3.1.2,-  

s e c t i o n ,  ( a ) ,  and t h e  top s u r f a c e ,  (b) - (d) ,  of 

p l a n a r  f low m e l t  spun r ibbons  obta ined  by i n t r o -  

ducing r e f r a c t o r y  powder t o g e t h e r  w i t h  t h e  m e l t .  

The powder agglomerated and formed lumps i n s i d e  

t h e  puddle ,  These lumps came ou t  from t h e  puddle 

a t  r e g u l a r  i n t e r v a l s  of t i m e .  From Z i e l i n s k i ,  P.G. 

and D.G.  A s t  (1983). 

Photographs of t h e  l o n g i t u d i n a l  c r o s s  - 



These regions of , respectively, recirculating and forward

moving flow are separated by the streamline marked _ = 1.0.

This streamline , in turn, intersects the free surface at some

location downstreamforming what is called a stagnation point

characterized by the velocity having the value of zero. It can

also be seen in this figure that, inmedlately after detachment,

the layer of fluid lying above the partially solidified ribbon

is dragged forward by the latter. However because of the melt

fluidity, the liquid layer continues to thin downuntil the

final ribbon thickness is reached. A final point worth noticing

is the intense motion generated near the top surface of the

puddle upon detachment resulting from the disappearance of the

constraining effect of the nozzle wall.

The characteristic fluid flow field computed by our model

certainly represents an alternative picture of the system when

compared with the results of all previous mathematical studies

of the flow in the melt puddle. Although the upward curvature

of the streamlines near the wheel had been predicted before, and

explained by the increasingly larger portion of the total flow

rate carried by the partially solidified ribbon underneath moving

downstream,no one had found a region of recirculating flow.

Despite the difficulties involved in resolving this point we

note that there seems to be someempirical evidence which

strongly suggests the existence of such recirculatory flow in

the puddle. Mention can be made,for example, of the experiments
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performed by Zlellnski and Ast(1983) where flnelly divided powder

was introduced together with the melt. They suggest that the

regularly spaced lumps observed on the top surfaces of ribbons

produced by the PFMS process resulted from the agglomeration

of individual powder particles during the intense reclrculating

motion taking place inside the puddle. In this sense, our results

provide the first quantitative evidence for the existence of

reclrculatory motion inside the puddle of the PFMS system.

The photographs showing Ziellnski and Ast's results have been

included here in Plate (3.3.1.22 .

We note , finally , that the main features of the flow

phenomena taking place inside the PFMS puddle have also been

observed in other , somewhat related flow systems, namely in

the study of lubrication with cavitation (Savage(1977)) and in

the analysis of coating flows (Kistler and Scriven(1984)).

Figure (5) is a plot of the average cross-sectional cooling

rate calculated according to the formula

H

fT = (l/H) Vx (dT/dx) dy (7)

0

against the downstream coordinate. One can readily see that the

cooling rate approaches 105 °C/s inside the puddle before the

start of solidification. However, the cooling rate peaks and then

decreases, first gradually and faster later as _reezing sets in
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and the latent heat of fusion is released. Moreover , once the

solidification is complete,and in agreement with the results of

calculations for the Twin Roll system, the cooling rate rises

again, this time reachlnga value above 106 °C/s, mainly because

of the smallness of the section being cooled. Most llkely, since

the splat is not firmly attached to the wheel, once the ribbon

leaves the puddle the heat transfer coefficient should decrease

and these high cooling rates may only be rarely observed.

It may be worth mentioning that a plot similar to Fig (5)

can be constructed using the much simpler lumped parameter models

described in Sec(3.2). So one may justlfiedly ask why is it

necessary to use the more complicated models which take into

account the temperature gradients across the splat in order to

represent mathematically the PFMS process ? .This can be

answered by recalling the main purpose of our work which is

the establishment of the relationships between the process

parameters and the structure-properties of the resulting product.

It should be understood that a model which neglects the existence

of temperature differences across the splat will be unable to

predict any microstructure variations across such thickness.

To point at the significance of the temperature differences

existing across the thickness of the splat, in Fig(6) we present

the computed temperatures on the top and bottom surfaces of the

puddle/splat formed in the PFMS process, as a function of the

downstream coordinate. As expected, one can readily see the
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T (°C)

1400

1350

1300

Fig (3.3.1.6_) .-

y=0 y=H

0.2 0.4

x (c_)

Calculated temperatures along the top and

bottom surfaces of the melt puddle as a function of the downstream

coordinate.
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Where (dT/dy) is the temperature gradient in the (approximately)

normal direction to the solidification interface, (dYs/dX) is

the rate of thickening of the solidified layer along the down-

stream coordinate and V is the x- componentof velocity at
X

the interface. From Eqn(8) , T can be calculated as a function
e

of the downstream location. To compare our calculations with

available experimental data we have used the fraction solidified

(relative to the final ribbon thickness) instead of the x

coordinate. The result of this calculation is shown in Fig(7).

The very large values of the cooling rate prevalent during the

first i/I0 fraction solidified are readily apparent. Also

clearly seen is the very sharp decrease from the large initial

values. A somewhat unexpected feature is the hump appearing

arounf f = 0.3 . This hump coincides with - and it may be the
S

result of - the detachment of the top surface of the puddle from

the nozzle. Finally, as the end of solidification is approached,

the effective cooling rate goes under 10 5 °C/s .

Considerable variations in the size of mlcrostructural features

have long been observed in melt spun ribbons . For the alloys of

this study, measurements have been made to quantify this feature.

A photomicrograph of a longitudinal section of a ribbon has been

included here in Plate (3.3.1.3). We then decided to use the

result of our thermal calculations to attempt a prediction of

these microstructural variations. We started by looking for a

suitable dendrite arm spacing-cooling rate correlation. We were



very rapid decrease of the temperature of the bottom surface of the

puddle following impingement. Somewhatunexpected, however, is the

much slower decrease of the temperature of the top surface. Moreover,

when the cooling rate on the bottom surface slows down as a

consequenceof the onset of solidification, the rate on the top

surface increases markedly. This increase in cooling rate coincides

and it maybe related to the detachment from the nozzle. Finally,

similarly to what happens to points along the bottom surface, the

cooling rate slows downas the free surface approaches the solid-

liquid interface. It can be seen that the cooling rate during

solidification is somewhatsmaller for the top surface than for

the bottom surface of the ribbon. This is to be expected from

the relative location of the chill with respect to these two

surfaces.Finally, mention should be madealso of the considerable

temperature gradients existing in the puddle. Wecan expect

these appreciable temperature differences (reaching even thousands

of °C/cm )to have a measurable effect on the nature of the

resulting microstructure.

To further investigate this point we decided to compute the

"effective" cooling rate experienced by points just ahead of the

solidification interface• The effective cooling rate was

computedfrom the following formula,

Te -- (dT/dy) (dYs/dX) Vx (8)
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Fig (3.3.1.7--).- Calculated effective cooling rate just ahead

of the solidification interface as a function of the fraction

solidified
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not able to find the exact correlation valid for the alloys of

our study so we decided to use a relationship proposed for the

superalloy Inconel 718; this is (see Sec(2A.l)),

• -0.34
-- 34 (T) (9)

s e

The result of combining Fig(7) with Eqn(9) is shown in Fig(8).

In the same figure also appear the results of actual metallographic

measurements performed by Ms Segal(1983) at MIT. The plot just

shows secondary dendrite arm/cell spacings as a function of the

fractional distance from the wheel surface (referred to the

final ribbon thickness)• The dashed line describing our results

overestimates the spacing for the first third of the ribbon but

corrects itself afterwards and remains in good agreement with the

observed values during the last 2/3 of solidification. At this

point we can only speculate on the reasons for the observed

discrepancy during the initial stages of solidification• Several

possible explanations can be offered• Among these we may mention:

(i) The difficulty of accurately computing the value of the

effective cooling rate at the beginning of solidification. The

J

size of our computational grid being the ultimate limitation.

This could produce a smaller rate of decrease of the effective

cooling rate during the initial stages of freezing thus making

the computed dendrite size curve closer to the measured values,

(ii) the existence of phenomena unaccounted for by our model, as

may be the case of undercooling in the melt layer next to the
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Fig (3.3.1.8--).- Comparison between predictions and measurements

of cell spacings as a function of the fraction solidified. See also

Plate (3.3.1._) .

89



100 urn

3.3.1._.- Longitudinal section of melt spun

ribbon of Inconel 718. The microstructure is

similar to the one found in conventional castings,

with the cell (dendrite) size increasing from

bottom (wheel side) to top (free surface). From

Warrington, D.H. et al., in Masumoto, T. and K.

Suzuki (eds), (1982).
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chill; the microstructure resulting from the solidification of

such an undercooled layer can be expected to differ considerably

from the ones characteristic of smaller cooling rates, (iii) it

can also be the case that we just simply used the wrong dendrite

size-cooling rate correlation. However, despite the apparent

disagreement it is indeed remarkable that our model is capable of

predicting microstructural sizes and cross sectional variations

of microstructure of the correct order of magnitude, despite all

the assumptions and uncertainties involved in our calculations.

One important feature of our model is the coupling of the

solidification phenomenaoccurring next to the wheel surface to

the capillary processes taking place on the free surface. Thus,

one of the products of our calculations is always the precise

location of the melt-gas interface in the downstream side. In

Fig (9) we show a plot of the location of such meniscus as a

function of the roll velocity. One can readily note that the

three computed free surface shapes are all very similar and indeed

almost identical throughout the first half of the puddle. We

note that the samedetachment point was used in these calculations.

However, as the free surface approaches the solidification

interface, the effect of freezing on the shape of the meniscus

becomesmore significant. Since the total flow rate is constant,

for any given downstream location, the sumof the partial flow

rates carried by , respectively, the solid ribbon and the liquid

film on top of it, must be equal to the total flow rate. So,
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Fig (3.3.1.9__).- Computed meniscus shapes with the wheel

velocity as a parameter.
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although the solidification rate is not altered significantly for

changes in the wheel velocity within the range considered here, the

total mass flow rate is an independent process parameter controlled

mainly through the ejection pressure. Thus , for any given down-

stream location, the partially solidified ribbon carries with it

a larger fraction of the total flow rate when the roll velocity is

large. This , in turn, has the effect of pulling the free surface

down producing a thinner liquid film.

The behavior described above contrasts with the one observed

in the somewhat analogous system obtained when a solid object is

withdrawn from a liquid bath. In this case a thin layer of fluid

adheres to the surface of the object. The thickness of this film

decreases with increasing distance from the exit point from the

bath until it reaches a limiting value under steady state con-

ditions. The final liquid film thickness is calculated to be

proportional to some fractional positive power of the withdrawal

speed. However, when withdrawing solids from liquid baths,the

supply of liquid is practically unlimited and the solid body is

able to carry as much fluid as it can. On the other hand, during

melt spinning, the melt flow rate is given by the ejection

pressure and the final ribbon thickness represents a compromise

between the imposed flow rate and the chilling effect of the

wheel,

An important feature of the PFMS system is the widespread

use of slot shaped nozzles. These rectangular nozzles allow for
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the production of ribbons or sheets with a width essentially equal

to the width of the slot. For comparison, in the CBMS process,

circular nozzles have been used most of the time. The cylindrical

jet produced during CBMS , on impingement, spreads laterally

on the moving wheel producing ribbon with a width which is several

times larger than the diameter of the initial jet. Since the

resulting spreading phenomenonis difficult to control, variations

in width along the ribbon length are commonlyobserved. On the

other hand, during PFMS, the ribbon width is determined by the

width of the nozzle and since both the melt flow rate and the

exit velocity of the ribbon ( = V ) are fixed, an overall
rX

mass balance leads to

Hf = Q/(w V ) (i0)r E

The behavior represented by Eqn(10), remarkable because of its

simplicity, is in sharp contrast with the more complicated

relationship involving the samequantities found to be valid in

the case of CBMS(see e.g. Kavesh). Needless to say, the more

complicated relationship in the case of CBMS arises because

of the additional factors involved with the lateral spreading of

the molten jet on impingement on the wheel, a phenomenonwhich

is characteristically absent during PFMS with slot shaped

nozzles. From Eqn(10) we see that we should expect the final

ribbon thickness to be inversely proportional to the wheel
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velocity. Wedecided to run our program several times maintaining

everything constant except the wheel velocity (and, of course, the

melt flow rate). The result of such an experiment is shownin

Fig(10). As expected,the results of our calculations fall very

well along a straight line of negative slope. So, our results

certainly satisfy the overall mass conservation requirement. This,

however, is to be expected since the overall mass balance was used

throughout as a criterion for the correctness of the results.

It is indeed unfortunate that very few experimental data of this

kind, produced under carefully controlled conditions, are

available. The only experimental data we got , for the system

of this study, are included in Fig(10). However, caution must be

used when comparing measurements and calculations in this plot

since all the experimental data points were obtained under

entirely different process conditions, in particular , under

different melt flow rates. Nevertheless, it is encouraging to see

that our model predicts expected trends accurately.

Furthermore, we should note that, once the wheel velocity and

the melt flow rate are specified, the computed line shown in

Fig(10) is related to one and only one value of the heat transfer

coefficient at the splat-wheel interface. We could then expect

empirical curves analogous to the theoretical one shown, be used,

in conjunction with a model like ours, for the determination of

h .
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From Eqn(10) we should also expect the final ribbon thickness

to be directly proportional to the melt flow rate. We decided to

perform several runs of our program in which the only parametric

variation was the flow rate. Perhaps not surprisingly, we found

that the overall mass balance could not be satisfied unless the

length of the puddle was adjusted accordingly. This change in

the size of the puddle with the flow rate is not unique to our

calculations but has also been consistently found in the

laboratory (see e.g. Huang and Fiedler(1981)). The results of

our calculations of the influence of the melt flow rate on the

final ribbon thickness and on the puddle length are shown in Fig

(ii), The results suggest that thicker ribbons may be produced

simply by increasing the melt flow rate. This conclusion mmy be

deceiving since larger flow rates produce bigger puddles which

in turn are increasingly unstable because of surface tension

effects. Moreover, as described before, thicker tapes would be

subjected to larger temperature differences across their thick-

nesses unless something is done to attenuate the chilling effect

of the wheel. The resulting thermal history will invariably lead

to more significant variations of the microstructure of the strip

across its thickness. Furthermore, it is clear that larger flow

rates, because of the attending increased energy content, will

require the substrate to be able to absorb more heat to be able

to induce rapid solidification on the splat. The expert's

consensus seems to be that melt spinning wheels are operating at
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Fig (3.3.1.11__).- Predicted effects of the melt flow rate on

the final ribbon thickness, Hf and on the size of the puddle,

L .
P

98



or very close to their maximum heat extraction capacities.

The heat extraction ability of the melt spinning wheel may be

well described, in the context of this work, by the corresponding

value of the heat transfer coefficient at the splat-wheel

interface under given operating conditions. It must be clear that

the value of such coefficient does not only depend on the physical

properties of the wheel and the splat but it is intimately related

to the actual values of the various process parameters. To further

investigate this point we performed some calculations changing the

value of h and adjusting the melt flow rate accordingly in

such a way that the overall mass balance was always satisfied. As

expected, the heat transfer coefficient appeared to have a strong

influence on the final ribbon thickness achieved. The actual result

of this calculation is shown in Fig(12). The point mentioned before

can be seen here more clearly. Much more efficient heat absorbing

substrates are required in order to produce melt spun ribbons

using large melt flow rates. This constraint is so strong that in

reality it is practically impossible to induce high cooling rates

(of the order of , say 10 5 °C/s) in ribbons thicker than, say

one hundred microns.

The superheat imposed on the melt prior to spinning is one

easily controlled parameter. Figure (13) shows the computed final

ribbon thickness as a function of the superheat of the melt. As

expected on simple physical grounds, the final thickness decreases

as the superheat is increased. This effect is particularly intense

at high superheats. However, this res-!ts must be interpreted with
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Fig (3.3.1.12___).- Predicted effect of the heat transfer

coefficient at the splat-wheel interface on the final ribbon

thickness.
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to spinning on the final ribbon thickness
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caution since the property changes produced by the higher pouring

temperatures can modify the wetting behavior of the melt and lead

to the apparently contradictory findings of some researchers

(see e.g. Scott(1974)).

d) Conclusions

i) We have constructed and programmed a mathematical model

of the PFMS process which is capable of predicting the dynamic

behavior of the system, particularly regarding the relationship

between process parameters and ribbon microstructure. Comparison

of the computed results with the limited empirical data available,

together with the extensive checks contained in our program, point

towards the correctness of our approach.

2) From our simulations we conclude that the most important

process parameters of the PFMS technique are:

(i) The melt flow rate,

(ii) the wheel velocity,

(ill)the heat transfer coefficient,

(iv) the geometry of the system, and

(v) the physical properties of the materials involved.

Interestingly enough, a similar set of relevant process parameters

was arrived at empirically by the NASA group (Jech et ai(1984)).

Only a restricted set of values of these process parameters

allows for the steady production of uniform ribbons, The restric-
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tion to particular sets of values of the process variables, although

significant, seems less stringent than the one observed in the case

of the Twin Roll system. There seems to be an advantage in using the

single roll device for RSP in view of its increased flexibility

of operation and of the possibility for continuous processing. It

would seemthat the inevitable deterioration of both wheel and

nozzle due to thermomechamical stresses and chemical effects is

one of the main obstacles to the continuous production of strip.

3) Wehave demonstrated how the basic principles of lubri-

cation theory, capillary hydrodynamics and solidification heat

transfer can be combined to produce a meaningful picture of a

typical RSP system. The insight gained from this approach

suggests the possibility of useful information to be obtained

by extending our methods to other RSP systems.

4) Webelieve that a computer program such as the one

described here may well constitute the core of an on-line control

mechanismfor the automation of the PFMS process. Ideally,

however, the program should be fine-tuned by comparing its

predictions with the results of a carefully designed and con-

trolled set of experiments in which not only the ribbon is

characterized in terms of its microstructure and properties but

all the relevant process parameters are also measured or

controlled as accurately as possible.

5) The FORTRANlisting of the program used to perform the

calculations described in this section is included in Sec(5.4).
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3.3.2.- SomeCommentson the Modeling of Other RSP Systems.

In the next few pages we present a bird's eye view of some

important aspects of the mathematical modeling of someselected

RSP systems. Examples from all groups presented in Table(3.1._)

will be discussed. However, in all cases the discussion will be

brief and limited to a few important points. Westart with the

Twin Roll and the Piston and Anvil RS processes since they are

both good examples of splatting methods and are also somewhat

related to the PFMS system described in the previous section.

We then moveon to the Melt Fragmentation techniques and summary

commentsare included about the various atomization processes.

Finally, mention will be made of the modeling of RSLaser

Processing and of Spray Forming techniques.

a) Modeling the Twin Roll RS Process.

The most comprehensive model of the TRRS process to date has

been presented by Miyazawa and Szekely(1981). Starting from the

momentumbalance equations in the lubrication approximation, they

solved the differential energy balance equation with due account

taken of the latent heat of solidification. Besides the thermal

calculations, closed form expressions were obtained for the

velocity field of the material in the roll gap. The phenomenonof

solid deformation was accounted for by considering the solidified

strip to be a creeping solid changing shape according to the
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Norton-Bailey law of secondary creep.

For the solution of the thermal problem, an implicit front-

tracking method was used after a coordinate transformation of

the original equations. The pressure profile in the roll gap was

obtained by integrating the expression for the pressure gradient

along the casting direction using a Runge-Kutta method. Wehave

repeated the pressure calculations performed by Miyazawa and

Szekely but this time including the material parameters describing

the strain rate in the solidified ribbon as given by Frost and

Ashby(1982). Very large peak values of the pressure were encoun-

tered for the conditions used (Fig(l)). The listing of the

program used to perform this calculation is included in Sec(5.5).

Amongthe most important conclusions of that study are the

following:

(i) Only a very narrow range of values of the process parameters

allows for the steady operation of the process. Experimental

precautions are required in order to obtain satisfactory perform-

ance. This has been verified in practice (Murty and Adler(1982)).

(ii) The main parameters of the technique are; the roll gap, the

roll velocity, the feed rate and the material properties. The

final ribbon thickness decreases with increasing the roll speed

and by decreasing the roll gap or the feed rate.

(iii) The roll separating force increases with decreasing the

roll speed because of the increased reduction ratio. Moreover,

slip between roll and splat accounts for the experimentally
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Fig (3.3.2.1--).- The computed pressure distribution in the roll

gap of the TRRS device for the data of Miyazawa and Szekely.
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observed differences in velocity of wheel and ribbon.

Miyazawa et ai(1983), have continued their study of the TRRS

process. These papers should be consulted for further details.

b) Modeling the Piston and Anvil System.

Bletry(1973) presented the first detailed calculations of

temperatures and cooling rates for the piston and anvil system.

The next important step was performed by Miyazawaand Szekely

(1979) who incorporated the spreading and squeezing phenomena

into the thermal calculations. They used the momentumequations

in the squeeze flow approximation to obtain expressions for the

velocity field. These were used , in turn, together with an

explicit finite difference form of the differential energy

balance equation, to calculate the cooling and freezing rates

for the process. The most important process parameters of the

technique were found to be; the piston speed, the sample size,

and the pouring temperature. The main variables influenced by

the values of these parameters are the final splat thickness

and the attainable cooling rates.

c) Modeling the Melt Fragmentation Techniques.

The two main groups are , as indicated in Table(3.1.1_), the

atomization processes and the impact disintegration processes.
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Mathematical modeling techniques have been used only very little

in the study of these processes. The explanation for this may

be the highly complex nature of the phenomena which take place.

We limit ourselves here to mentioning the main variables

involved and the literature sources where more information can

be found.

In centrifugal atomization, a spinning dish, cup or electrode

produces fine particulates by first thlnning of the melt and

subsequent breaking up of the thinned layer. The main process

parameters of this process have been found to be (see e.g.

Hodkin et ai(1973), Schmitt(1979) and Champagne and Angers(1984));

the dish diameter and speed, the melt density, surface tension,and

viscosity, the feed rate and the pouring temperature. Using basic

concepts from fluid mechanics,relationshlps have been derived

giving, for example , the fluid film thickness at the rim of the

rotating dish and the resulting mean droplet diameter. Interestingly

enough, many similarities with the well known centrifugal atomiza-

tion process widely used in chemical engineering technology, have

been found. There is one additional complicating factor in this

case, however, since the fluid not only has to be fragmented but

the resulting particles must be cooled and solidified.

Gas and water atomization processes have long been used by the

powder metallurgy industry. The introduction of ultrasonic gas

atomization , with its resulting smaller particle size, has carried

the fluid atomization processes into the realm of RST. The main
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process parameters in this case have been recognized to be; the

molten metal properties and flow geometry and the gas(water) jet

flow rate and geometry. Fluid dynamic phenomenaare strongly

involved in the thinning and breaking up of the liquid metal

Jet during fluid atomization. The heat transfer processes of

cooling and solidification which take place simultaneously add

considerable complexity to the system. Tallmadge, for example,

(1978) has performed extensive studies of metal atomization

processes from a chemical engineering point of view, whereas

Beddow(1978) and Lawley(1977) have presented comprehensive

reviews of the subject. Grant(1983) also presents an overview

of atomization processes but from the perspective of RST

The calculation of the cooling and freezing rates of the

undercooled metal droplets produced by metal atomization

processes has been performed most recently by Gill et ai(1984).

In the case of the vibrating electrode process (Ruthardt and

Lierke(1981)) the melt is fragmented by the break up of the

capillary waves induced on the thin melt layer by the vibrating

electrode, In this case, the theory of capillary waves has

been used to estimate the meandroplet size as a function of the

melt surface tension, density, and viscosity and of the

vibration frequency of the electrode.

Schmitt(1979) has described the basic physics of impact dis-

integration processes, He found that the final particle size in
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this system dependedon ; the nozzle diameter, the impactor radius

and size, the distance from the nozzle to the impact point, the

impactor rotation velocity, and the material properties. Lynch

(1982) has used the basic principle of impact disintegration

processes to produce particulates from a continuous molten metal

Jet.

d) The Modeling of RS Laser and Electron BeamProcessing and

of Liquid Dynamic Compaction (Spray Forming).

The scanning of the surfaces of bulk materials with high

intensity laser or electron beamscan produce rapid melting and

solidification of thin surface layers. In these processes the most

important parameters are; the wavelength of the radiation, the

incident power density, the interaction time , the detailed

nature of the surface and the material properties.

Breinan and Kear(1983) have modeled RS laser processing by

using the one dimensional heat conduction equation with a source

term. In this way they were able to avoid the complicating

factors introduced by the change of phase and the fluid motion

inside the melt layer. They clalm very good agreement between the

results of their calculations and those obtained from a more

sophisticated finite element analysis which took the latent heat

into account. Moreover, they felt that the accuracy of their

model was good enough for comparison with their own measurements.
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Chanet ai(1983) have presented a more comprehensive model of

IS Laser Processing in which they take into account the fluid

flow phenomenataking place in the molten layer. The heat

transfer and fluid flow pr_lans are solved simultaneously

and predictions are made abo_t cooling and freezing rates as

well as of puddle morpholoKy. Mawella(1984) constructed a

thermal model for the Electron Beam Processing of solids

based on the theory of surfsce sources of heat,popular in

welding calculations . He claims good agreement between his

calculations and the results of his own experiments.

Liquid Dynamic Compaction (also Spray Forming or Spray

Deposition) is the name givem to a group of RS processes

in which relatively thick sections of rapidly solidified material

are prepared by the continued showering of a substrate with a

spray of molten metal droplets (which in turn may be produced by

any of the various atomization processes). The structures and

properties of the resulting products are functions of both the

spray characteristics and the properties of the substrate. Singer

and Evans(1983) have described the fundamentals of a statistical

model for the representation of the spray. They have also suggested

how to use the heat flow equations for the calculation of the

specific conditions leading to the steady operation of the process.

They have found the predictions of their model to be in good

agreement with measurements performed in their own laboratory.

Apellan et ai(1983), and EI-Kaddah et ai(1983) have performed
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detailed heat transfer calculations for the closely related Plasma

Deposition processes. They found that the events taking place in

the plasma are as important or more that those happening once the

molten particles impact the substrate. Their papers should be

consulted for details.

In summary, although a large amount of work has been done

on the mathematical modeling of RSP systems, there seemto be

ample opportunities for additional research . Many systems have

been studied only partially and nothing at all is known about a

few others. Because of the relatively novel nature of RST ,

mathematical modeling can contribute to substitute costly trial

and error procedures by more rational approaches to process

development and control.
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Chapter 4

CONCLUSIONSANDSUGGESTIONSFORFURTHERWORK

Since most of the conclusions pertaining to the modeling of the

PFMS process were presented before (see Sec(3.3.1)), in this

chapter we only add a few more points not explicitly mentioned

there. On the other hand, wewill include someconclusions of a

more general nature about the potential of the mathematical

approach to help in the understanding of the complex features

of RSPsystems. Specific suggestions are maderegarding the

directions in which mathematical modeling can be applied to the

study of RST . In the sequel we simply present our points

without following any particular order.

a) One important limitation of the PFMS process is the result

of two conflicting requirements. On the one hand, to obtain RS

effects a small sample size is needed in at least one spatial

direction. On the other, the production of thicker strip requires

larger melt puddles. Since surface forces are what holds the

puddle together during the production of thin ribbons,as mentioned
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in Sec(3.3.1) above, it is clear that the question of the stability

of the melt puddle is critical to the success of the process. It

may be seen that the production of relatively thick tapes is faced

with big problems. It might be helpful to artificially constrain

the puddle in someway instead of letting the surface forces

do the job alone. However, according to our results, the thicker

the produced tapes, the more significant the microstructure

variations across the splat thickness will be. It is an intrinsic

feature of the heat transfer-solidification processes taking

place in this system that causes the highest cooling rates to

be limited to that portion of the splat which is closer to the

moving chill.

b) It is well known that the unavoidable roughness always

present on the wheel surface during PFMS is one important

reason for the considerable variations in surface quality and

microstructure of melt spun ribbons. The uneven wheel surface

produces localized regions of relatively good thermal contact,

which are separated by areas where the contact is poor (lift-off

areas). Waysmust be devised to deal with this problem if one

wishes to optimize the process. Onepossible alternative frequently

suggested consists in homogenizing the cooling power of the wheel

surface by eliminating the areas of good thermal contact. Oneway

of doing this is by coating the surface of the wheel by a thin layer

of a heat insulating material, (e.g. glass). This layer should be

sufficiently thick to thermally homogenize the surface but thin
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enough as to not to impair the heat extraction ability of the wheel.

c) More attention should be paid to the spreading and wetting

phenomenataking place during PFMS.In particular, the contact

line formed in the rear of the puddle at the point of impingement

should be looked at more closely. This contact line is the locus

of many important processes involving fluid flow and heat

transfer and the understanding of these may prove to be vital for

the successful implementation of the technique. Both experimental

and theoretical work is required in this area.

d) The additional effects introduced by the presence of inertia

forces (which were neglected in our calculations) should be more

fully explored. Although because of the large surface tensions

characteristic of metallic melts, this effects are likely to be

small, more work is needed to verify this expectation.

e) An effort should be madeto perform carefully planned

experiments aiming at the verification of the existing mathematical

models of RSP systems. Work can proceed along the lines of

the research performed on the CBMS system or following the

pattern set by Miyazawa et al.. It is indeed unfortunate that

so little information of this type is available for the PFMS

process. In any case, the aim of experimental programs should be

the establishment of the relationships linking the process

parameters to the structure and properties of the resulting

products.
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f) The entire area of melt fragmentation processes remains a

challenging ground for modeling work. The powder metallurgy

industry has motivated muchof the existing work on metal atomi-

zation. Howeververy little of this research has been of the

theoretical kind. Manyaspects of the various melt fragmentation

techniques still remain obscure with empirical correlations being

the only quantitative means of studying the processes. There

are considerable opportunities for useful contributions from

mathematical modeling in this whole area. The abundance of complex

hydrodynamic phenomenacoupled to heat transfer-solidlfication

processes always present in these systems should attract the

attention of the mathematically oriented engineer as well as that

of the fluid dynamicist or applied mathematician. Work in this

area could start from the important contributions by Hinze(1955),

Dombrowskiand Johns(1963), and , particularly, the one by

Bradley(1973). A good summaryof the theory of fluid jets and

their stability can also be found in Anno(1977).

g) A somewhatrelated set of problems is found in the area of

liquid dynamic compaction (spray forming). Here, the detailed

structure and properties of the deposited product depend on the

fluid dynamics of the swarm of droplets of varying sizes, on the

interaction of such droplets with the underlying substrate and on

the heat transfer phenomena taking place both during flight and

after impingement of the droplets on the deposit.
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Needless to say, obtaining deposits with low porosity and desirable

properties should be achieved more easily by using a rational

approach in which the use of empirical trial and error is minimized.

h) The use of high intensity energy beamsto alter the surface

the bulk samples by rapid heating and cooling is now well establish-

ed at an industrial level. Heat treating, welding, surface melting

and freezing and surface alloying have all been demonstrated.

However, despite the successes, there are still areas where

knowledge is scanty.

In all surface heating systems one invariably finds thin layers

of material subjected to very large temperature gradients. In

particular, during RS laser or electron beamprocessing, thin

molten layers form on the surface of the object which solidify

once the heat source is removed. The behavior of these thin layers

of fluid is governed by the samebasic principles of continuum

mechanics. Because of the small scale, capillary phenomenaplay an

important role in these systems. Webelieve that increased under-

standing of the detailed behavior of these systems can be obtained

from a more extensive application of the equations of fluid

dynamics and heat transfer with change of phase. Even more know-

ledge can be gained if these thermal calculations are coupled with

crystal growth kinetics for the prediction of the microstructure

of the surface layers resulting from processing.
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i) The intrinsic limitation of RSP to small sample sizes invary-

ably results in systems with a disproportionately large surface

area to volume ratio. This makes imperative a more detailed study

of the interfacial phenomenataking place at interphase interfaces.

The peculiar behavior of lines of contact, which are almost always

present in RSP systems certainly deserves more careful consid-

eration. Very often, these contact lines are the locus of complex

heat transfer and fluid flow phenomenawhich take place at the

same time.

Both the chemical and the physical aspects of the various

interfaces should be watched more carefully. Important outcomes

of this work could be , for example, the microscopic interpre-

tation of heat transfer coefficients at splat-chill interfaces

on the basis of the structural features of such interfaces and

of the capillary phenomenataking place there, or an understanding

of the complex capillary flows which take place in shallow molten

pools and which, in many cases, determine the final shape of the

heat affected zone.

Convenient starting points for the quantitative study of

interface phenomenain RSP systems are the works by Dussan(

1979), Timsit(1982) and Hocking(1983), on spreading and wetting

processes and the paper by Levich and Krylov(1969) on fluid flow

phenomenain which surface phenomenaplay an important part.

j) The success of numerical methods for the prediction of
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cooling and solidification rates in conventional casting systems

(e.g. Brody and Apelian(1982) and Dantzig and Berry(1984)), should

be an incentive for a more widespread use of mathematical modeling

in RS research. In particular, it would seemthat considerable

benefit can be obtained with a modest amount of effort from the

application of the now well established method of weak solutions

to the calculation of solidification processes during RS

k) The complicated fluid flow phenomenataking place in most

RST configurations certainly warrant further study for their

own sake. Needless to say, such phenomenaare also important

from a practical point of view since, ultimately, cooling and

freezing rates are strongly influenced by the convective fluid

motion taking place . It may well be that simplifications

introduced for the sake of mathematical simplicity are such that

important physical processes actually taking place are being

disregarded. For this reason,more complete solutions of the fluid

flow problem are needed. This study can be helped a great deal

if someof the commercially available computer programs for fluid

flow and heat transfer calculations are used. One good package

which has produced much of the results in our group at MIT is the

one prepared by Patankar and Spalding. In Sec(4A.l) we review

the basic features of the Patankar-Spalding algorithm hoping that

it finds more use within the RS community. Furthermore , in

Sec(5.7) we present the FORTRAN listing of a program we
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constructed, based on the P-S algorithm, for the calculation of

heat transfer by conduction-convection in a system where the flow

is given by lubrication theory. It should be noted that this

program is only a very simplified version of the P-S algorithm

and is included here more to indicate the main ideas involved

in the commercially available version.

l) Last but not least is the problem of compacting the products

of RS . Since engineering components almost always will come in

sizes much larger than those typical of rapidly solidified samples,

some form of compaction is unavoidable. Although a few RS

techniques avoid this problem (e.g. liquid dynamic compaction), most

do not. Although compacting is a very complex process, it is also

subject to the laws of continuum mechanics. Wecan foresee increased

application of both finite difference and finite element methods

for the solution of compaction problems .
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Chapter 5

COMPUTERPROGRAMS

In this chapter we present the FORTRANlistings of someof

the computer programs we have developed to perform our calculations

of RSP systems, particularly those described in Sec(3.2)and

(3.3). Wehave also included , for completeness, additional listings

of other programs we have developed and found useful in gaining

insight into the complex problems of RST°All the programs are

fully commentedfor easier use.

In Sec(5.1) we present a program capable of performing the

thermal calculations for a wide range of RS configurations based

on the assumption of Newtonian cooling conditions (Sec(3.2)). A

great deal of useful information can be obtained from this

program regarding cooling and freezing rates for specific systems.

In Secs(5.2) and (5.3) computer programs for the calculation of

temperature profiles and freezing rates in semiinfinite media

under various boundary conditions, are given. The codes are simply

programmedversions of the equations presented in Sec(3A.2).
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In Sec(5.4) we present the program for the calculations of the

PFMS system described in Sec(3.3.1). This program is the most

important one in the set since it produced the bulk of the results

reported in this thesis. The program can be made to run in an

iterative fashion by modifying a selected process parameter

at a time, incrementally, until the overall mass balance is

satisfied. However, we have found this process to be very

expensive and not always convergent. Instead, we have found

more convenient to do the iterations by performing several

runs of the program and effecting in between reasonable changes

in the required process parameter until our mass balance was

satisfied. This way of running the program certainly was more

economic. In any case it is relatively straightforward to make

the program to perform the iterations automatically.

Section(5.5) presents the program used to perform the

rolling force calculations described in Sec(3.3.2). The program

could also be used to perform calculations in related systems

such as for the rolling of thin sheets. Section(5.6) presents

a very simple program for the solution of systems of linear

algebraic equations with tridiagonal matrices. This code can

be used as the basis of an algorithm for the solution of

transport phenomenaproblems in discrete form.

Finally, in Sec(5.7) we include a sample program we have

constructed to perform calculations of temperatures in two-

dimensional domains when heat is being transferred both by
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conduction and by convection. In this program the fluid flow field

is not calculated numerically but through closed form expressions

obtained from lubrication theory. It is included here just to

give an idea of the nature of one of the most widely used,

commercially available computer programs for heat transfer and

fluid flow calculations.
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111 m Program RSPNN . Heat Transfer during RSP under

Newtonian Cooling.

C ........ THIS PROGRAM COMPUTES TEMPERATURE,COOLING RATE,SOLIFIED FRAC- RSPO0010

C ..... TION AND FREEZING RATE AS A FUNCTION OF TIME FOR VARIOUS RAPID RSPO0020

C ..... SOLIDIFICATION PROCESSING CONFIGURATIONS.FOR SIMPLICITY, COOLING RSPO0030

C ..... IS ASSUMED TO OCCUR ACCORDING TO NEWTON'S LAW. THE INPUT DATA RSPO0040

C ..... ARE AS FOLLOWS; TP=POURING TEMPERATURE , TO=TEMPERATURE OF THE RSPO0050

C ..... QUENCHING MEDIUM , H = HEAT TRANSFER COEFFICIENT (CAL/CM.CM.S.C), RSPO0060

C ..... RHO= MELT DENSITY (G/CC) CP=MELT SPECIFIC HEAT (CAL/G.C) RSPO0070

C ..... TF=MELTING POINT (C) , HF_HEAT OF FUSION (CAL/G) 2R=SMALLEST RSPO0080

C ..... DIMENSION OF THE SPLAT EXCEPT FOR THE CASE OF THE'SLAB COOLED RSPO0090

C ..... THROUGH ONE SIDE ONLY WHERE R = THICKNESS OF THE SPLAT (CM), RSPO0100

C ..... AOV = RATIO OF HEAT TRANSFER AREA TO SPECIMEN VOLUME (I/CM), RSPO0110

C ..... TIME = TIME (S), T=TEMPERATURE (C), CR=COOLING RATE (C/S) , FS= RSPO0120

C ..... FRACTION SOLIDIFIED (-) , FR=FREEZING RATE (I/S) RR=SOLIDIFIED RSPO0130

C .... DISTANCE (CM) : GROWTH RATE (CM/S) ; GP:GEOMETRIC PARAMETER (-). RSPOOi40

C ..... THE PARAMETERS FOR THE GAS ARE AS FOLLOWS: RHOG=-GAS DENSITY

C ..... TCG=THERMAL CONDUCTIVITY OF GAS , CPG=SPECIFIC HEAT OF GAS ,

C ..... EMUG=VISCOSITY OF GAS VG=RELATIVE VELOCITY OF GAS.

TP=840.

TO=O.

RHO=2.7

CP=0.206

TF=660.

HF=95.

TCG=O.O00042

RHOG=O.O0163

CPG=0.124

EMUG=O.O00225

VG=IO000.O

COEFF=IO0.O

EN=0.375

RSTAR=O.O025
DR=O.O005

RINI=RSTAR + DR

WRITE(6,50) RHO.CP,TF,HF

WRITE(6,50) TP,TO

WRITE(6,50) RHOG,CPG,TCG,EMUG

WRITE(B,50) VG,DR,RINI

WRITE(6,50) COEFF,EN

WRITE(6,500)
R=RSTAR

DO 7 d=1,21
R= R + DR

RE=2.*R*RHOG*VG/EMUG

PR=CPG*EMUG/TCG

H=TCG*(2. + 0.6*(RE**.5)*(PR**.333))/(2.*R)

AOV=3./R

GP=I ./3.

C ..... AOV=3./R (SPHERE); 2./R (CYLINDER); I./R (SLAB)

C ..... GP=I./3. (SPHERE) ; I./2. (CYLINDER) ; I. (SLAB)

DTIME=O.O005

WRITE(6,50) RE,PR

WRITE(6,50) H

WRITE(6,50) R,AOV,GP

TIME=O.O

DO I I=1,1OOO

RSPO0150

RSPO0160

RSPO0170

RSPO0180

RSPO0190

RSPO0200

RSPO0210

RSPO0220

RSPO0230

RSPO0240

RSPO0250

RSPO0260

RSPO0270

RSPO0280

RSPO0290

RSPO0300

RSPO0310

RSPO0320

RSPO0330

RSPO0340

RSPO0350

RSPO0360

RSPO0370

RSPO0380

RSPO0390

RSPO0400

RSPO0410

RSPO0420

RSPO0430

RSPO0440

RSPO0450

RSPO0460

RSPO0470

RSPO0480

RSPO0490

RSPO0500

RSPO0510

RSPO0520

RSPO0530

RSPO0540

RSPO0550
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C

I

2

C

3

4

C

5

6

?

50

JO0

2O0

3OO

50O

TIME=TIME + DTIME

TAO=(RHO*CP)/(AOV*H)

T= (TP-TO)*EXP(-TIME/TAO) + TO

CR= - (TP-TO)*EXP(-TIME/TAO)/TAO

WRITE(6,100) TIME,T,CR

IF(T.LE.TF) GO TO 2

CONTINUE

CONTINUE

DAS=COEFF*((ABS(CR))**(-EN))

WRITE(6,iO0) TIME,T,CR

WRITE(B,100) DAS

TSS=TIME

WRITE(B,300) TSS

FSO=O.O

DO 3 I=l, I000

TIME=TIME + DTIME

CI=(I./(RHO*HF))*AOV

C2=H*(TF-TO)

FS=CI*C2*(_IME-TSS)
FR=CI*C2

IF(FS.GE.O.99999) FS=0.99999

RR= R*(1. - (1.-FS)**GP)

GR= (GP*R)*(1./(1.-FS)**(1.-GP)),FR

WRITE(6,200) TIME,FS,FR,RR,GR

IF(FSO.LE.O.5.AND.FS.GT.O.5) WRITE(6,200)

IF(FS.GE.O.99999) GO TO 4

FSO=FS

CONTINUE

CONTINUE
TES=TIME

WRITE(6,300) TES

DO 5 I=I,1000

TIME=TIME+DTIME

TAO=(RHO,CP)/(AOV*H)

T=(TF-TO)*EXP(-(TIME-TES)/TAO) + TO

CR=-(TF-TO)*EXP(-(TIME-TES)/TAO)/TAO

WRITE(6,100) TIME,T,CR

IF(T.LE.200.) GO TO 6

CONTINUE

CONTINUE

WRITE(6,100) TIME,T,CR

WRITE(6,500)

CONTINUE

FORMAT(SX,4F16.8)

FORMAT(IOX,3F20.9)

FORMAT(2X,SFI4.7)

FORMAT(25X,FI5.8)

FORMAT(/)
STOP

END

TIME,FS

RSPO0560

RSPO0570

RSPO0580

RSPO0590

RSPO0600

RSPO0610

RSPO0620

RSPO0630

RSPO0640

RSPO0650

RSPO0660

RSPO0670

RSPO0680

RSPO0690

RSPO0700

RSPO0?IO

RSPO0720

RSPO0730

RSPO0?40

RSPO0750

RSPO0760

RSPO0770

RSPO0780

RSPO0790

RSPOO800

RSPO0810

RSPO0820

RSPO0830

RSPO0840

RSPOO850

RSPOOB60

RSPO0870

RSPO0880

RSPO0890

RSPO0900

RSPO0910

RSPO0920

RSPO0930

RSPO0940

RSPO0950

RSPO0960

RSPO09?O

RSPO0980

RSPO0990

RSP01000

RSP01010

RSPOI020
RSP01030

RSP01040

RSP01050
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5.2.- Program NEUMANN . Neumann's Solution to the Stefan

Problem.

C---r ..... THIS PROGRAM COMPUTES TEMPERATURES, COOLING AND FREEZING

C ....... RATES FOR THE CLASSICAL ONE-DIMENSIONAL STEFAN PROBLEM

C ....... ACCORDING TO NEUMANN'S SOLUTION FOR THE SEMI-INFINTE MEDIUM.

C ....... SEE CARSLAW AND JAEGER (1959), CH. II

C ......... THE INPUT AND OUTPUT VARIABLES ARE AS FOLLOWS: TCL = THERMAL

C ....... CONDUCTIVITY OF LIQUID , TCS = THERMAL CONDUCTIVITY OF SOLID ,

C ....... TDIFL = THERMAL DIFFUSIVITY OF LIQUID , TDIFS = THERMAL

C ....... DIFFUSIVITY OF SOLID , SPHTL = SPECIFIC HEAT OF LIQUID , SPHTS

C ....... = SPECIFIC HEAT OF SOLID , TINT = INITIAL TEMPERATURE OF THE

C ....... MELT , TWALL = WALL TEMPERATURE , TF = MELTING POINT , HEATF =

C ....... LATENT HEAT OF FUSION , X = DISTANCE , T = TIME , XS =

C ....... SOLIDIFIED THICKNESS , TEMP = TEMPERATURE QUANTITIES

C ....... IN CGS UNITS TEMPERATURES IN CELSIUS . ENERGY IN CALORIES.

C ......... THE DATA SHOWN CORRESPOND TO ALUMINUM SOLIDIFYING AGAINST

C ....... A COPPER CHILL

TCL= .5

TCS= .5

TDIFL = .925

TDIFS=.925

SPHTL = . 2

SPHTS=. 2

TINI=760.

TWALL=25.

TF=660.

'HEATF=95.

DALAMB=O.O01

ALAMB=O.

00 I I=1,1OOO

ALAMB:ALAMB + DALAMB

FLHS= EXP(-ALAMB*ALAMB)/ERF(ALAMB)

COEFI= TCL*SQRT(TDIFS)/(TCS*SQRT(TDIFL))

COEF2= (TINI TF)/(TF - TWALL)

COEF3 = EXP(-TDIFS*ALAMB*ALAMB/TOIFL)

COEF4= I. - ERF(ALAMB*SQRT(TDIFS/TDIFL))

SLHS= - COEFI*COEF2*COEF3/COEF4

RHS=ALAMB*HEATF*SQRT(3. 1416)/(SPHTS*(TF-TWALL))

DIF= FLHS + SLHS - RHS

IF(DIF.LE.O.O01) GO TO 2

I CONTINUE

2 CONTINUE

ALAMB=ALAMB

WRITE(6,3) ALAMB

3 FORMAT(18X,F15.8)
T=O.

00 5 0=I, I0

DT=O.O01

T=T + DT

X=O.

XS=2.*ALAMB*SQRT(TDIFS*T)

WRITE(6,6) XS,T

DO 4 K=I,6

DX:.O5

TS:((TF TWALL)/ERF(ALAMB))*ERF(X/(2.*SQRT(TDIFS*T))) + TWALL

TL= TINI - (TINI-TF)*(I.-ERF(X/(2.*SQRT(TDIFL*T))))/(I.-

I ERF(ALAMB*SQRT(TDIFS/TDIFL)))

IF(TS.GE.TF) GO TO 22

II CONTINUE

TEMP=TS

GO TO 33

22 CONTINUE

TEMP=TL

33 CONTINUE

WRITE(6,6) X,TEMP
X=X+DX

4 CONTINUE

5 CONTINUE

WRITE(6,7) DT,DX,J

6 FORMAT(SX,F15.5,SX,F20.8)

7 FORMAT(/1OX,2FIS.B,SX,[3/)

STOP

END

NEUOOO10

NEUOOO20

NEUOOO30

NEUO0040

NEUOOOSO

NEUOOO60

NEUOOOTO

NEUO0080

NEUO0090

NEUO0100

NEUO0110

NEUOO120

NEUOOf30

NEUOOI40

NEUOOiSO

NEUOO160

NEUOO170

NEUOO180

NEUO0190

NEUOO2OO

NEUOO210

NEUOO220

NEUOO230

NEUOO240

NEUO02SO

NEUOO260

NEUO0270

NEUOO280

NEUO0290

NEUOO3OO

NEUO0310

NEUOO320

NEUOO330

NEUOO340

NEUOO350

NEUOO360

NEUOO370

NEUOO380

NEUOO390

NEUOO4OO

NEUOO410

NEUOO420

NEUOO430

NEUOO440

NEUOO450

NEUOO460

NEUOO4TO

NEUOO480

NEUOO490

NEUOO500

NEUOO510

NEUOOS20

NEUOO530

NEUOO540

NEUOO550

NEUOO560

NEUOO570

NEUOOS80

NEUOO590

NEUOO6OO

NEUOO610

NEUOO620

NEUOO630

NEUOO640

NEUOO650

NEUOO660

NEUOO670

NEUOO680

NEUOO690

NEUOO?OO

NEUOO710
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5.3.- Program SCHWARZ. Schwarz's Solution of the Stefan

Problem.

C ......... THIS PROGRAM COMPUTES TEMPERATURES, COOLING AND FREEZING

C ....... RATES FOR THE CLASSICAL 0NE-DIMENSIONAL STEFAN PROBLEM

C ....... ACCORDING TO SCHWARZ'S SOLUTION FOR A SEMI-INFINTE MEDIUM.

C ....... SEE CARSLAW AND GAEGER (t959) , CH. 11

C ......... THE VARIABLES HERE ARE THE SAME AS IN PROGRAM NEUMANN

C ....... (SEC.5.2) EXCEPT THAT THE THERMAL CONDUCTIVITY AND DIFFUSIVITY

C ....... OF THE MOLD, RESPECTIVELY TCMOLD AND TDIFM , ARE ALSO INCLUDED.

C ....... MOREOVER, V HERE DENOTES THE VELOCITY OF THE SOLIDIFICATION

C ....... INTERFACE . THE UNITS ARE THE SAME AS IN NEUMANN .

TCMOLD=.94

TCL=.29

TCS=.53
TDIFM=I.I

RHOS=2.8

RHOL=2.8

CP5=.23

CPL=.26

TDIFL=TCL/(RHOL*CPL)

TDIFS=TCS/(RHOS*CPS)

SPHTL=CPL

SPHTS=CPS

TINI=7OO.

TWALL=25.

TF=660.

HEATF=95.

DALAMB=O.OOI

ALAMB=O.

DO I I=1,IOOO

ALAMB=ALAMB + DALAMB

COEi=TCMOLD*SQRT(TDIFS)*EXP(-ALAMB*ALAMB)

COE2=TCS*SQRT(TDIFM) + TCMOLD*SQRT(TDIFS)*ERF(ALAMB)

FLHS= COEI/COE2

COEFI= TCL*SQRT(TDIFS)/(TCS*SQRT(TDIFL))

CDEF2= (TINI TF)/(TF - TWALL)

COEF3= EXP(-TDIFS*ALAMB*ALAMB/TDIFL)

COEF4= 1. - ERF(ALAMB+SQRT(TDIFS/TDIFL))
SLHS= - COEFI-COEF2*COEF3/COEF4

RHS=ALAMB*HEATF*SQRT(3.1416)/(SPHTS*(TF-TWALL))

DIF= FLHS + SLHS - RHS

IF(DIF.LE.O.O01) GO TO 2

i CONTINUE

2 CONTINUE

ALAMB=ALAMB

WRITE(6,3) DIF,ALAMB

3 FORMAT(18X,2F15.8)

T=O.

DO 5 J=I,10

DT=O.OI

T=T + DT

X=O.

XS=2.*ALAMB*SQRT(TDIFS*T)

V= ALAMB*SQRT(TDIFS/T)*TDIFS

WRITE(6,7) XS,V,T

DO 4 K=I,IO

DX=O.05

SCHOOOIO

SCHOOO20

SCHOO030

SCHOOO40

SCHOO050

SCHOOO60

SCHOOOTO

SCHOOO80

SCHOOO90

SCHOOiO0

SCHOOIIO

SCHOO120

SCHOOI30

SCHOOl40

SCHOOl50

SCHOOl60

SCHOOITO

SCHOO1BO

SCHOOl90

SCHOO200

SCHOO210

SCHOO220

SCH00230

SCH00240

SCH00250

SCHOO260

SCH00270

SCHOO280

SCHOO290

SCHOO3OO

SCHOO310

SCH00320

SCHOO330

SCHOO340

SCHOO350

SCHOO360

SCHOO3?O

SCHOO380

SCHOO390

SCHOO4OO

SCHOO410

SCHOO420

SCHOO430

SCH00440

5CHOO450

SCHOO460

SCHOO470

SCHOO480

SCHOO490

SCHOOSOO

SCHOO510

SCHOO520

SCHOO530

SCHOO540

SCHOO550
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11

22

33

44

AMI= TCS,SORT(TDIFM)*(TF-TWALL)

AM2= TCS*SQRT(TDIFM) + TCMOLD*SQRT(TDIFS)*ERF(ALAMB)

AMOLD= AMI/AM2

TMOLD= AMOLD*(I.+ERF(X/(2.*SQRT(TDIFM*T)))) + TWALL

ASI= (TF-TWALL)/AM2

AS2 = TCS*SQRT(TDIFM)

AS3= TCMOLD*SQRT(TDIFS)

TS = TWALL + ASI*(AS2 + AS3*ERF(X/(2.*SQRT(TDIFS*T))))

ALI=(TINI-TF)/(I.-ERF(ALAMB*SORT(TDIFS/TDIFL)))

TL= TINI - ALI,(I.-ERF(X/(2.*SQRT(TDIFL*T))))

IF(X.LE.O.) GO TO 33

IF(TS.GE.TF) GO TO 22

CONTINUE

TEMP=TS

GO TO 44

CONTINUE

TEMP=TL

GO TO 44

CONTINUE

TEMP=TMOLD

CONTINUE

WRITE(6,6) X.TEMP

X=X+DX

CONTINUE

AL2=EXP(-ALAMB*ALAMB*TDIFS/TDIFL)

AL3=4 ,ALAMB,ALAMB*ALAMB*TDIFS*SQRT(TDIFS/TDIFL)/SQRT(3. 141592)

AL=-ALI*AL2*AL3

CR=AL/(XS*XS)

WRITE(6,8) CR

CONTINUE

FORMAT(5X,F15.5,5X,F20.8)

FORMAT(IX,3F20.9)

FORMAT(13X,F25.9)

STOP

END

SCHO0560

SCHOO5?O

SCHOO580

SCHOO590

SCHOO6OO

SCHOO610

SCHO0620

SCHOO630

SCHOO640

SCHOO650

SCHO0660
SCHOO670

SCHOO680

SCHOO690

SCHOO7OO

SCHOO710

SCHOO720

SCHOO730

SCHOO740

SCHOO750

SCHO0760

SCHOO770

SCHO0780

SCHOO790

SCHO0800

SCHOO810

SCHO0820

SCHOO830

SCHO0840

SCH00850

SCHOO860
SCH00870

SCH00880

SCH00890

SCHO0900
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5141 _ Program PFMS . Calculation of Heat Transfer and Fluid

Flow in the Planar Flow Melt Splnnlng Process.

C---THIS PROGRAM COMPUTES SOLIDIFIED THICKNESS FOR THE CASE OF SINGLE CCSOO010

C---ROLL STRIP CASTING OF METALS. THE ALGORITHM IS BASED ON THE ENTHALPYCCSO0020

C---METHOD AND THE PARTICULAR SCHEME USED HAS BEEN AN EXPLICIT ONE. CCSO0030

C---ENTHALPIES (AND THUS TEMPERATURES) ARE COMPUTED EXPLICITLY FOR A CCSO0040

C---ROW OF GRID POINTS AT A GIVEN DOWNSTREAM LOCATION BY USING THE VALUECCSO0050

C---OF ENTHALPY AND TEMPERATURE OF THE GRID POINTS ALONG THE INMEDIATLY CCSO0060

C---PRECEEDING UPSTREAM LOCATION. CCSOO07O

C---HERE WE ASSUME "PLUG FLOW" TYPE MOTION OF THE METAL BEING CAST. " CCSO0080

C---HOWEVER, VELOCITY PROFILES ARE COMPUTED AT EVERY DOWNSTREAM LO- CCSOO090

C---CATION TAKING INTO ACCOUNT THE PRESENCE OF A SOLIDIFIED SHELL. CCSO0100

C---DURING THE LAST STAGES OF SOLIDIFICATION, FLUID FLOW AND HEAT CCS00110

C---TRANSFER INTERACT MUCH STRONGER SINCE THE FREE MELT-GAS SURFACE CCSOOt20

C---IS COMPUTED FROM THE SOLIDIFIED THICKNESS AND THIS, IN TURN , CCS00130

C---DEPENDS ON THE PRECISE LOCATION OF THE FREE BOUNDARY. CCS00140

REAL UO(32),UN(32),HO(32),HN(32),CTU(32),TEMP(32),TEMPO(32) CCS00150

REAL TINI(32),CR(32),VX(32),VXO(32),STREAM(32) CCS00160

C---THE VARIABLES IN THE ARRAYS ARE: UO =OLD PSEUDO TEMPERATURE (SEE CCS00170

C---BELOW); UN = NEW PSEUDO TEMPERATURE; HO : OLD ENTHALPY ; HN : NEW CCSO0180

C---ENTHALPY; CTU = C TIMES U (SEE BELOW); TEMP = ACTUAL TEMPERATURE; CCS00190

C---TEMPO = OLD TEMPERATURE; TINI : INITIAL TEMPERATURE ; CR = COOLING CCSO0200

C---RATE ; VX = X-COMPONENT OF VELOCITY ; VXO = OLD VELOCITY ; STREAM CCS00210

C .... STREAM FUNCTION (DIMENTIONLESS). CCS00220

TFUS=1325.0 CCS00230

HFUS=71.7 CCS00240

TC=0.0717 CCS00250

CP=O. 1434 CCS00260

RHO=8.5 CCS00270

EMU=O.046 CCS00280

SIGMA=1778.0 CCS00290

TCR=0.16 CCSO0300

C TCR=0.93 CCS00310

RHOR=7.86 C£S00320

C RHOR=8.94 CCS00330

CPR=O.15 CCS00340

C CPR=O.0914 CCS00350

TDR= TCR/(RHOR*CPR) CCS00360

WRITE(6, 110) TFUS,HFUS,TC,CP CCS00370

WRITE(6,110) RHO,EMU,SIGMA CCS00380
WRITE(6,1tO) TCR,RHOR,CPR,TDR CCS00390

C--- QUANTITIES WILL BE GIVEN IN CGS UNITS. CCSO0400

C---ENERGIES WILL BE GIVEN IN CALORIES AND TEMPERATURES IN CELSIUS. CCS00410

C---THE PHYSICAL PROPERTY DATA ARE AS FOLLOWS: TFUS = MELTING POINT OF CCS00420

C---THE SUBSTANCE BEING CAST (NOTE; IN THE CASE OF AN ALLOY, INSTEAD OF CCS00430

C---TFUS A LIQUIDUS AND A SOLIDUS HAVE TO BE SPECIFIED); HFUS = LATENT CCS00440

C---HEAT OF FUSION ; TC = THERMAL CONDUCTIVITY ; CP = SPECIFIC HEAT ; CCS00450

C--- RHO = DENSITY ; EMU = VISCOSITY ; SIGMA : SURFACE TENSION ; TCR = CCS00460

C--- THERMAL CONDUCTIVITY OF ROLL ; RHOR = DENSITY OF ROLL ; CPR = SPE- CCS00470

C---CIFIC HEAT OF ROLL ; TDR = THERMAL DIFFUSIVITY OF ROLL .

PI=3.14159

TWALL=25.0

TBULK=1440.O

BN=O.064

HIN=O.0300

W=0.635

OMEGA=1200.O

CCS00480

CCS00490

CCSOO500

CCS00510

CCS00520

CCS00530

CCS00540

CCS00550
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RR=12.7

0=3.86

PL=0.29

THETA=20.O

VRXR = OMEGA*2.0*PI'RR/60.O

QPUW= Q/W

COEFI= 3.0_EMU/SIGMA
TW = TWALL*TCR

TF= TFUS'TC

TB= TBULK,TC

HF= HFUS'RHO

XI=-0.60

XB = XI + BN

XD= XI + PL

XF=O.O

XINI: XI XI

XBRE= XB - XI

XDET= XD - XI

XFIN= XF - Xl

FO = HF*Q/(W,(I.5_PL))

TGR= FO/TCR

HIO = HIN

H20 = TAN(THETA,2.0*PI/360.O)

H30 = 1.O/(PL/2.)

SLIPE=0.25

HTCO=l.035

YFS=O.O

PO=O.O

PF = 101300000.0

ALFA:O.O

BETA=O. 333

GAMA=I.002

WRITE(6 110) TWALL,TBULK

WRITE(6 110) BN,HIN,W

WRITE(6 110) OMEGA,RR,Q

WRITE(B 110) PL,THETA

WRITE(6 1t0) VRXR,QPUW,COEFI

WRITE(6 110) XI,XB,XD,XF

WRITE(6 110) XINI,XBRE,XDET,XFIN

WRITE(6 110) FO,TGR

WRITE(6 110) HIO,H2D,H30

WRITE(6 110) SLIPE.HTCD

WRITE(6 II0) BETA,GAMA

C---THE PROCESS PARAMETERS ARE : TWALL = TEMPERATURE OF THE ROLL (SEE

C---BELOW) ; TBULK = POURING TEMPERATURE ; BN = NOZZLE BREADTH ; HIN =

CCS00560

CCS00570

CCS00580

CCS00590

CCSO0600

CCSO0610

CCS00620

CCS00630

CCS00640
CCS00650

CCS00660

CCS00670

CCS00680

CCS00690

CCSO0700

CC500710

CC500720

CCS00730

CCS00740

CCSO0750

CCS00760

CCS00770

CCS00780

CCS00790

CCSO0800

CCS00810

CCSOOB20

CCS00830

CCS00840

CCS00850

CCS00860

CCSO08?O

CCS00880

CCS00890

CCSO0900

CCSO0910

CCS00920

CCS00930
CC500940

CC500950

CC500960

CC500970

CCS00980

CCS00990

CCS01000

C---WHEEL-NOZZLE GAP ; w : NOZZLE (STRIP) WIDTH : OMEGA = ANGULAR VELO- CCSOIOiO

C---CITY OF ROLL (RPM); RR = ROLL RADIUS ; O = MELT FLOW RATE ; PL : CCSOI020

C---PUDDLE LENGTH : THETA = CONTACT ANGLE MELT-NOZZLE (DOWNSTREAM) : CCSOI030

C---VRXR = SURFACE VELOCITY OF ROLL : XINI,XBRE,XDET AND XFIN ARE,RESPECCCSOI040

C---TIVELY THE LOCATIONS OF : THE UPSTREAM EDGE OF PUDDLE , THE END OF CCSOI050

C---NOZZLE BREADTH , THE DETACHMENT POINT AND THE (APPROXIMATE) END- CCSOI060

C---POINT OF SOLIDIFICATION : HiO,H20 AND H30 ARE USED TO INITIATE THE CCSOI070

C---NUMERICAL SOLUTION FOR THE FREE SURFACE ; SLIPE = SLIP EXPONENT ( CCSOI080

C---SEE BELOW --LBL. 16) ; HTCO = HEAT TRANSFER COEFFICIEN T (SEE BELOW CCSOI090

C---,-LBL. 33) ; BETA = FRACTION TO DEFINE THE LOCATION OF SOLID-LIQUID CCSOIIO0
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C---INTERFACE(SEE AFTER LBL. 37) ; GAMA : COEFFICIENT TO DECIDE IF A

C---GIVEN GRID POINT HAS SOLIDIFIED (SEE AFTER LBL. 3? BELOW).

C

N: 31

NMAX=N

NMINt= N-1

NT= 80(30

C

C---THE GRID PARAMETERS ARE: N = NUMBER OF POINTS ALONG THE

C---TICAL, PERPENDICULAR TO THE WHEEL) DIRECTION , NT = NUMBER OF

C---POINTS ALONG THE X (DOWNSTREAM) DIRECTION .

C---THE FOLLOWING LOOP INITIALIZES BOTH TEMPERATURE AND ENTHALPY.

DO I0 I= i,N

UO(I) = TB

HO(I)= ((RHO*CP)/TC)*(UO(1)-TF) ÷ HF

UN(I)= TB

TINI(I)= UO(I)/TC

I0 CONTINUE

WRITE(6, I00) (TINI(I),I= I,N)

TIME= O.

X= Xl

DISTX= 0.0

KOUNTI=O

KOUNT2=O

C---THE FOLLOWING LOOP ADVANCES THE CALCULATION ALONG THE DOWNSTREAM

C---DIRECTION, JUMPING FROM A LINE OF GRID POINTS AT CONSTANT X TO THE

C---NEXT. THIS IS THE MAIN "OUTER LOOP" OF THE CALCULATION .

C---NOTE; TIME,KOUNTI AND KOUNT2 ARE ONLY COUNTERS.

DO 50 K=I,NT

KOUNTI=KOUNTI+I

KOUNT2=KOUNT2+I

C ..... OLD" TEMPERATURE IS CALCULATED.

DO 12 d=I,NMAX

TEMPO(J)=UO(J)/TC

I_ CONTINUE

CCS01110

CCS01120

CCS01130

CCSOIt40

CCS01150

CCS01160

CCS01170

CCS01180

Y (VER- CCS01190

CCS01200

CCS01210

CCS01220

CCSO1230

CCSO1240

CCSO1250

CCS01260

CC501270

CCS01280

CCSO1290

CCS01300

CCSO1310
CCS01320

CCSO1330

CCSO1340

CCS01350

CCSO1360

CCS01370

CCS01380

CCS013go

CCS01400

CCS01410

CC501420

CCS01430

CCSOt440
CCS01450

C---IN THE FOLLOWING THE GRID SPACING IS COMPUTED, SINCE THE METHOD IS CCS01460

C---AN EXPLICIT ONE , DX AND DY ARE RELATED BY THE STABILITY CONDI- CCS01470

C---TION. THIS PART OF THE PRDGRAM (UP TO LBL. 15) COMPUTES THE LOCA- CCS01480

C---TION OF THE UPPER BOUNDARY. THEN , UP TO LBL 16, THE GEOMETRICAL CCS01490

C---PARAMETERS OF THE GRID ARE SET. CCS01500

C---THE GAS-MELT INTERFACE HAS TO BE SPECIFIED (DISTX.GT.XDET) EITHER CCS01510

C---BY SOME (ASSUMED) SHAPE OR BY NUMERICALLY SOLVING THE CAPILLARY CCS01520

C---EQUATIONS (PREFERRED). CCS01530

C---THE NEXT THREE CONDITIONS CONTROL WHERE THE MELT-GAS INTERFACE HAS CCS01540

C---TO BE CALCULATED DEPENDING ON THE PROGRESS OF SOLIDIFICATION AND

C---ON IF DISTX IS .GT. XDET

H : HiN

HMYFS : H - YFS

IF(HMYFS.LE.O.O001) GO TO 51

IF(UN(NMAX).LE.GAMA*TF) H = HFIN

IF(UN(NMAX).LE.GAMA,TF) GO TO 15

IF(DISTX.LT.XDET) GO TO 15

14 CONTINUE

HMYFSC=HMYFS,HMYFS*HMYFS

HMYFSS:HMYFS*HMYFS

CCS01550

CCS01560

CCS01570

CCS01580

CCS01590

CCS01600

CCS01610

CCS01620

CCS01630

ccs01640

CCS01650
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FUNCT=COEFI-((OLPUW/HMYFSC)(VRX/HMYFSS))

H3: H3O + FUNCT*OX

H2= H20 + H3*DX

HI= H10 + H2*DX

IF(H2.GE.O.OOO1) GO TO 51

HIO=H1

H20=H2

H30=H3

HMYFS = HI

H= HMYFS + YFS

IF(H.GT.HIN) H : HIN

15 CONTINUE

VELAV= O/(W,HIN)

V:O/(W*H)

DY=HIN/FLOAI(NMINI)

DX=(DY*DY)*VELAV/2.

DT=DX/VELAV

C=DT/(DY*DY)

TIME=TIME+DT

DISTX:DISTX+DX

X=X + DX

16 CONTINUE

C

SLIPC = DISTX/XFIN

IF(DISTX.GE.XFIN) SLIPC=I.OO

VRX= VRXR,SLIPC*,SLIPE

C

C---THE NEXT 4 STATEMENTS SERVE TO ACCOUNT FOR THE PRESENCE OF

C:--THE FREE SURFACE AFTER DETACHMENT. GRID POINTS OUTSIDE THE

C---MELT ARE NOT COMPUTED THERE.

DIF=(HIN + O.5*DY - H)/DY

KDIF-INT(OIF)

NMAXMI=(N-t) KDIF

NMAX= NMAXMI + I

NMAXM2= NMAXM1 I

Y=O.O

C---WITH THIS LOOP WE ADVANCE THE CALCULATION IN THE VERTICAL (Y)

C---DIRECTION. FROM THE EQN. V*DH/DX = K D(OT/DY)/DY WE CONSTRUCT

C---THE EXPLICIT F.D. EQN.: HN= HO + C'(UO(J-I)-2UO(U)+UO(J+I)).

C---THE RESULT OF THIS CALCULATION IS HN(K)

C---THIS IS THE MAIN "INNER" LOOP OF THE PROGRAM.

D0 20 I=2,NMAXMI

IPl=[+l

IMI=I-I

CTU(I)=C*(UO(IMI)+UO(IPI)-2.*UO(1))

HN(I):HO(I)+CTU(1)

20 CONTINUE

C---THE FOLLOWING STATEMENTS (UP TO 30) SIMPLY COMPUTE THE PSEUDOTEM-

C---PERATURES CORRESPONDING TO THE JUST CALCULATED VALUES OF HN BY

C---USING THE THERMODYNAMIC RELATIONSHIP BETWEEN ENTHALPY AND TEMPE-

C---RATURE.

DO 30 I=2.NMAXMI

IF(HN(I).GT.HF)GO TO 27

23 CONTINUE

IF(HN(I).LE.HF.ANO.HN(I).GE.O. )GO TO 26

CCSO1660

CCSO1670

CCSO1680

CCSO1690

CCSO17OO

CCS01?IO

CCSOt920

CCSO1730

C£SO1740

CCSO1750

CCSO1760

CCSO1770

CCS01780

CCS01790

CCSO18OO

CCSO1810

CCSO1820

CCSO1830

CCSO1840

CCSO1850

CCSO1860

CCS01870

CC501880

CCSO1890

CC501900

CCS01910

CCS01920

CCS01930

CCS01940

CCS01950

CCS01960

CCS01970

CCS019BO

CCS01990

CCS02000

CCS02010

CCS02020

CCS02030

CCSO2040

CCSO2050

CCSO2060

CCSO2070

CCSO2080

CCSO2090

CCSO21OO

CCSO2110

CCSO2120

CCSO2130

CCSO2140

CCS02150

CCS02160
CCS02170

CCS02180

CCS02190

CCS02200
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24 CONTINUE

UN(I)=TF + HN(I)*(TC/(RHO*CP))

GO TO 30

26 CONTINUE

UN(I)=TF

GO TO 30

27 CONTINUE

UN(I)=TF + (HN(I)-HF)*(TC/(RHO*CP))

30 CONTINUE

C---TO COMPUTE THE TEMPERATURE AT THE WHEEL-SPLAT INTERFACE IMPERFECT

C---THERMAL CONTACT IS ASSUMED.THE TEMPERATURE AT THE SURFACE OF THE

C---WHEEL CAN BE GIVEN BY THE FORMULA FOR PEAK TEMPERATURE IN A

C---THICK SOLID UNDER A MOVING HEAT SOURCE. TWO ALTERNATIVE B.C'S FOR

C---THIS BOUNDARY ARE THAT UW = TW AND THAT UN(1) = UW (VARIABLE)

C---,WHICH WOULD CORRESPOND TO IDEAL COOLING (I.E. HTCO VERY LARGE).

C---MOREOVER, HTC CAN BE MADE VARIABLE AS A FUNCTION OF VRX.

33 CONTINUE

DU=(2.*FO)*SORT(TDR*(DISTX/VRXR)/PI)

UWR= TW + DU

TSR= UWR/TCR

C UW=UWR

UW= TW

TSURF= UW/TCR

CHTC=I.O

IF(UN(1).GT.GAMA*TF) CHTC=VRX/VRXR

HTC=HTCO*CHTC

UN(1) = ((TC/DY)*UN(2) + HTC*UW)/((TC/DY) + HTC)

C UN(1) = UW*TC/TCR

C

HN(1) = ((RHO*CP)/TC)*(UN{I) - TF)

IF(UN(1).GE.TF) HN(1) = ((RHO*CP)/TC)*(UN(1) - TF) + HF

CCSO2210

CCSO2220

CCSO2230

CCSO2240

CCSO2250

CCSO2260

CCSO2270

CCSO22BO

CCSO2290

CCSO23OO

CCSO2310

CCSO2320

CCSO2330

CCSO2340

CCSO2350

CCSO2360

CCSO2370

CCSO2380

CCSO2390

CCSO24OO

CCSO2410

CCSO2420

CCSO2430

CCSO2440

CCSO2450

CCSO2460

CCSO2470

CCSO2480

CCSO2490

CCS02500

CCS02510

CCS02520

C---THE FOLLOWING STATEMENTS (UP TO 37) INTRODUCE THE BOUNDARY CONDITIONCCSO2530

C---0N THE NOZZLE (FREE SURFACE) SIDE OF THE GRID. NOTE THAT BENEATH CCSO2540

C--- THE NOZZLE BREADTH THE TEMPERATURE IS TAKEN AS THE POURING VALUE CCSO2550

C---WHILE AFTER THE BREADTH AND ALONG THE FREE SURFACE A ZERO HEAT FLOW CCSO2560

C---CONDITION IS USED.

UN(NMAX)=UN(NMAXMI)

HN(NMAX)=HN(NMAXMI)

IF(DISTX.LE.XBRE) GO TO 36

35 GO TO 37

36 CONTINUE

UN(NMAX)=TB

HN(NMAX)=((RHO*CP)/TC)*(TB-TF) + HF

37 CONTINUE

CCSO2570

CCSO2580

CCSO2590

CCSO26OO

CCSO2610

CCSO2620

CCSO2630

CCSO2640

CCSO2650

C---THE FOLLOWING PORTION (FROM 37 UP TO 38) COMPUTES VELOCITY PROFILES CCSO2660

C---IN THE SPLAT UNDER THE ASSUMPTIONS OF LUBRICATION THEORY. ACCOUNT CCSO2670

C---IS TAKEN OF THE THICKNESS SOLIDIFIED BY MEANS OF ALFA . CCSO2680

YFS=O.O CCSO2690

IF(UN(I).LE.GAMA*TF) YFS=BETA*DY CCSO27OO

DO 301J=2,NMAXMI CCSO2710

dMl=j-1 CCSO2720

JPI=J+I CCSO2730

IF(UN(J).LE.GAMA*TF) YFS = (FLOAT(JMI)-BETA)*DY CCSO2740

IF(UN(J).LE.TF/GAMA) YFS= (FLOAT(JMI)+O.S*BETA)*DYCCSO2750
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301

302

303

305

307

310

1

330

350

38

C---TO

C - - -UO

39

UNPR: (UN(JPI) + UN(j))/2.

IF(UNPR.LE.GAMA*TF) YFS= (FLOAT(JMI)+BETA)*DY

IF(UNPR.LE.TF/GAMA) YFS= (FLOAT(JMI)+I.5*BETA)*DY

IF(UN(J).GT.GAMA-rF) GO TO 302

CONTINUE

CONTINUE

IF(UN(NMAX).LE.GAMA*TF) YFS=(FLOAT(NMAXMI) BETA)*DY

ALFA= YFS/H

IF(ALFA.GE.I..O00) ALFA=O.9999

FOA= 1. 3.*ALFA + 3.*ALFA*ALFA - ALFA*ALFA*ALFA

IF(DISTX.GE.XDET) GO TO 305

CONTINUE

PPO2E= 6.*(VRX*(H/2.)*(1,-ALFA) + VRXR*H*ALFA - QPUW )/

((H*H*H)*FOA)
A2: PPO2E

AI= VRX/(H*(ALFA-t. )) - PPO2E*H*(ALFA+I.)

AO= PPO2E*H*H*ALFA - VRX/(ALFA-I.)

OLPUW= - PPO2E*((H*H*H)/6. )*FOA * VRX*(H/2.)*(t.-ALFA)

GO TO 307

CONTINUE

PPO2E= (3./2.)*(VRX*H*(I.-ALFA) + VRXR*H*ALFA - OPUW )/

((H*H*H)*FOA)

A2= PPO2E

AI= - PPO2E*2.*H

AO = VRX - PPO2E*H*H*(ALFA*ALFA - 2.*ALFA)

QLPUW= - PPO2E*(2./3.)*(H*H*H)*FOA + VRX*H*(1.-ALFA)

CONTINUE

ATH= ALFA*H

ATHS = ALFA*H*ALFA*H

ATHC = ALFA*H*ALFA*H*ALFA*H
PP= 2.*EMU*PPO2E

PN= PO ÷ PP*DX

IF(PN.GE.PF.AND.PO.LT.PF) XPRESS=OISTX

PO=PN

Y=O.O

DO 38 I=I,NMAX

IF(ALFA*H.GT.O.O.AND.Y.LT.ALFA*H) GO TO 330

CONTINUE

VX(I)= A2*(Y*Y) + AI*Y + AO

STREAM(1)=(VRX_*ALFA*H + (A2/3.)*( Y_Y*Y - ATHC ) +

(AI/2.)*( Y*Y - ATHS ) + AO*( Y - ATH ))/QPUW

GO TO 350

CONTINUE

VX(I):VRXR

STREAM(I)= VRXR*Y/QPUW

CONTINUE

Y=Y+DY

CONTINUE

IF(UN(1).LE.TF.AND.UO(1).GT.TF) XSS=DISTX

IF(VX(NMAX).GE.O.OO.AND.VXO(NMAX).LT.O.O0) XSTAG2=DISTX

IF(UN(NMAX).LE.GAMA*TF.ANO.UO(NMAX).GT.GAMA*TF) HFIN = H

IF(UN(NMAX).LE.TF/GAMA.AND.UO(NMAX).GT.TF/GAMA) GO TO 51

AVOID HAVING TO STORE THE WHOLE GRID, THE FOLLOWING LOOP RESETS

TO BE THE FRESHLY CALCULATED VALUE I.E. UN . SAME WITH HN .

CONTINUE

CCS02760
CCS02770

CCS02780

CCS02790

CCS02800

CCS02810

CCS02820

CCS02830

CCS02840

CCS02850

CCS02860

CCS02870

CCS02880

CCS02890

CCS02900

CCS02910

CCS02920

CCS02930

CCS02940

CCS02950

CCS02960

CCS02970

CCS02980

CCS02990

CCS03000

CCS030tO

CCS03020

CCS03030

CCS03040

CCS03050

CCS03060

CCS03070

CCS03080

CCS03090

CCS03100

CCS03110

CCS03120

CCS03130

CCS03140

CCS03t50

CCS03160

CCS03170

CCS03180

CCS03190

CCS03200

CCS03210

CCS03220

CCS03230

CCS03240

CCS03250

CCS03260

CCS03270

CCS03280

CCS03290

CCS03300
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DO 40 I=I,NMAX

UO(I)=UN(I)

HO(I)=HN(I)

vxo(z)=vx(I)
40 CONTINUE

C---THE FOLLOWING LOOP RECOVERS THE ACTUAL TEMPERATURES AND ALSO

C---COMPUTES THE VALUES OF THE COOLING RATE FOR EVERY GRID POINT.

C---BESIDES. AVERAGE COOLING RATES ACROSS THE SPLAT FOR FIXED X

C---LOCATION ARE CALCULATED.

00 41 I=I,NMAX

TEMP(I)=UN(1)/TC

41 CONTINUE

SUM=O.O

DO 42 I=I.NMAX

CR(1):(TEMP(1)-TEMPO(1))*(VX(1)/DX)

SUM= SUM + CR(1)

42 CONTINUE

AVERCR= SUM/NMAX

C---WITH THE FOLLOWING STATEMENTS IT IS POSSIBLE TO PRODUCE OUTPUT WITH

C---DIFFERENT FREQUENCIES IN THE DIFFERENT REGIONS OF THE DOMAIN.

IF(ALFA.GT.O.20) GO TO 48

44 IF(KOUNTI.NE.200) GO TO 50

46 GO TO 49

48 IF(KOUNT2.NE.200) GO TO 50

49 CONTINUE

C444 GO TO 50

C---FINALLY RESULTS ARE WRITEN
WRITE(6,102) K,IPI,IMt,NMAX,NMAXM1

WRITE(6,99) H,DY,DISTX,X,DX,TIME

C WRITE(6,100) (HN(I),I=I.NMAX)

WRITE(6,123) TSURF,TSR,YFS,ALFA

WRITE(6,126) AVERCR

WRITE(6,126) PP,PN

WRITE(6,100) (TEMP(I),I=I,NMAX)

WRITE(6, 105) (CR(I),I=t,NMAX)

WRITE(6,100) (VX(I),I=I,NMAX)

WRITE(6, I07) (STREAM(1).I=I.NMAX)

KOUNTI=O

KOUNT2=O

SO CONTINUE

51 CONTINUE

OF = VRXR*W*H

ERRORQ= (Q - QF)/Q

WRITE(6.102) K,IPI.IMI.NMAX,NMAXMI

WRITE(6 99) H,DY,DISTX,X,DX,TIME

WRITE(6 124) TSURF.XSS.XSTAG2.XDET

WRITE(6 125) YFS,ALFA,QF.ERRORQ

WRITE(6 126) PP,PN,XPRESS.HFIN

WRITE(6 I00) (TEMP(I),I=I°NMAX)

WRITE(6 105) (CR(I).I=I.NMAX)

WRITE(6 I00) (VX(I)oI=I.NMAX)

WRITE(6 107) (STREAM(I),I=I,NMAX)

99 FORMAT 5X,6FlO.6)

100 FORMAT 1X,4F15.5)

102 FORMAT 15X,5110)

105 FORMAT 1X,4E15.5)

107 FORMAT, 1X,4F15.8)

110 FORMAT, 5X,4F 16.6)

123 FORMAT, lOX,4F15=5)

124 FORMAT_ 5X,SF13.5)

125 FORMATq 12X,4F15.5)

126 FORMAT _ 12X,4E15.5)
101 CONTINU

STOP

END

CCS03310

CCS03320

CCS03330

CCS03340

CCS03350

CCS03360

CCS03370

CCS03380

CCS03390

CCS03400

CCS03410

CCS03420

CCS03430

CCS03440

CCS03450

CCS03460

CCS03470

CCS03480

CCS03490

CCS03500

CCS03510

CCS03520

CCS03530

CCS03540

CCS03550

CCS03560

CCS03570

CCS03580

CC503590

CCS03600

CCS03610

CCS03620

CCS03630

CCS03640

CCS03650

CCS03660

CCS03670

CCS03680

CCS03690

CCS03700

CCS037_0

CCS03720

CC503730

CCS03740

CCS03750

CCS03760

CCS03770

CCS03780

CCS03790

CCS03800
CCS03810

CCS03820

CCS03830

CCS03840

CCS03850

CCS03860

CCS03870
CCS03880

CCS03890

CCS03900

CCS03910

CCS03920

CCS03930

CCS03g40

CCS03950

135



5eSe_ Program PRESSTRQ . Calculation of Rolling Forces in the

Gap of a Twin Roll RS Device .

C ........ THIS PROGRAM COMPUTES THE PRESSURE DISTRIBUTION IN THE

C ...... TWIN-ROLL-QUENCHING MACHINE FOR SPLAT COOLING. THE PROGRAM

C ...... USES A SINGLE-STEP,FOURTH-ORDER RUNGE KUTTA METHOD AS

C ...... DESCRIBED IN FERZIGER J. NUMERICAL METHODS FOR ENGINEERING,

C ...... WILEY,198I.P.

C ........ THE VARIABLES NEEDED FOR THE CALCULATION ARE; Q, THE

C ...... VOLUME FLOW RATE PER UNIT WIDTH, R, THE ROLL RADIUS;HO,

C ...... THE MINIMUM GAP BETWEEN THE ROLLS;OMEG, THE ANGULAR VELOCl-

C ...... TY OF THE ROLLS; Xl THE LIFT-OFF POINT;X4,THE POINT OF INITIAL

C ...... CONTACT WITH THE ROLLS;XN, THE SLIP COEFFICIENT;PL AND B

C ...... ARE THE RHEOLOGICAL PROPERTIES OF THE SPLAT.

........ PNEW IS THE REQUIRED PRESSURE AND DDX IS THE STEP SIZE USED

C ...... IN THE CALCULATIONS.DPDX IS THE PRESSURE GRADIENT AND X IS THE

C ...... SPACE AXIS IN THE ROLLING DIRECTION.

C ........ NOTE THAT THE CALCULATED DPDX VALUES ARE BASED ON THE

• C ...... ASSUMPTIONS OF THE THEORY OF LUBRICATION.

C

DIMENSION H(3),SL(3),VRX(3),VRXP(3),A(3),CI(3),DPDX(3)

Q=.97

R=5.0

HO=O. 005

OMEG= 160.00

C---CALCULATION OF THE LIFT-OFF POINT

COEO= Q*60./(3.1416*OMEG)

COEI= HO + R

COE2 = SORT( COEi'*2. - COEO )

COE3= (COEI + C0E2)/2.

XI= SQRT(ABS(R**2. C0E3..2.))

X4=-0.9

H4= HO+R-SQRT(R*R-X4*X4)

VIN=O/(2.*H4)
XN=O.O

PL=5.0

C ...... THE VALUE OF B DEPENDS ON THE TEMPERATURE

B=0.0000000126

FACI=(PL+2.)*(2.*3.1416*OMEG/60.)

FAC2=B**PL

BETA=(FAC1/FAC2)**(I./PL)

DDX= 0.0025

WRITE(6,567) B,PL.DDX,O.OMEG.HO

567 FORMAT(SX,6EII.4//)
EMU=I./B

POLD=IOIO000.O
PINI=POLD

PNEW=POLD

PP= 0.0

FORCE = 0.0

IND= 0

X=Xl

WRITE(6, 100) XI,PP,PNEW,IND

PREO0010

PREO0020

PREO0030

PREOO040

PREO0050

PREO0060

PREO0070

PREO0080

PREO0090

PREO01OO

PREO0110

PREO0120

PREO0130

PREO0140

PREOOI50

PREO0160

PREO0170

PREOOIBO

PREO0190

PREO0200

PREO0210

PREO0220

PREO0230

PREO0240

PREO0250

PREO0260

PREO0270

PREO0280

PREO0290

PREO0300

PREO0310

PREO0320

PREO0330

PREO0340

PREO0350

PREO0360

PREO0370

PREO0380

PREO0390

PREO0400

PREO0410

PREO0420

PREO0430

PREO0440

PREO0450

PREO0460

PREO0470

PREO0480

PREO0490

PREOO500
C ...... MAIN LOOP, DIRECTS THE STEP-BY-STEP ADVANCEMENT OF THE SOLUTION. PREO0510

DO 2 d=l,800 PREO0520

VIN=Q/(2.*H4) PREO0530

POLD=PNEW PREO0540

C ...... SECONDARY LOOP,COMPUTES THE REOUIRED DPDX VALUES AT THE INTER- PREO0550
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C ...... MEDIATE GRID POINTS CONTAINED WITHIN ONE

C ...... CALCULATED VALUES ARE STORED IN ARRAYS.

MAIN X-STEP. THE

DO I I =I,3

H(1)=HO+R-SQRT(R*R-X*X)

SL(1)=ABS((X4-X)/(X4+Xl))

VRX(I)=2.,3.1416*OMEG*SQRT(R*R-X*X)/60.

VRXP(I):(VRX(I)-VIN)*SL(1)*'XN + VIN

A(I)=(PL+2.)*(VRXP(I)*H(I)-Q/2.)/((PL+I.)*H(I)**(PL+2.))

Ci(I)=((PL+I.)**(1./PL))*EMU

DPDX(I)=CI(1)*((ABS(A(I)))**((I./PL)-I.))*(A(I))

C WRITE(6,99) X

C WRITE(6,101) H(I),SL(I),VRX(I),VRXP(1),A(1),DPDX(I)

X=X-DDX/2.

1 CONTINUE

C ...... END OF INNER LOOP.

X:X+DDX/2.

C ........ RUNGE-KUTTA FORMULA FOR THE CALCULATION OF THE PRESSURE.

C
PNEW=POLD - DDX*(DPDX(I)+4.*DPDX(2)+DPDX(3))/6.

C
PDN=(PNEW-PINI)/BETA

IF(X.LT.-XI+DDX.AND.X.GT.-XI-DDX) PMAX= PNEW

SHEAR= H(2)*DPDX(2)

FRICOE = SHEAR/PNEW

FORCE= FORCE + PNEW*DDX

IF(PNEW.LE.IOiOOOO.O.AND.U.GE.25) GO TO I02

WRITE(6,100) X,DPDX(2),PNEW,PDN,FRICOE,J

99 FORMAT(/2OX,EIS.5/)

10(:) FORMAT(lX,SE12.S,3X,13)

101 FORMAT(1X.6E11.4)

2 CONTINUE

C ...... END OF MAIN LOOP.

t02 CONTINUE
TORQUE = FORCE*ABS(XI)

FD= FORCE/(BETA*R)

WRITE(6,99) PMAX,FORCE,TORQUE,FD

STOP

END

PREO0560

PREO0570

PREO0580

PRECK:)590

PREO0600

PREO0610

PREO0620

PREO0630

PREO0640

PREO06SO

PREO0660

PREO0670

PREO0680

PREO0690

PREO0700

PREO0710

PREO0720

PREO0730

PREO0740

PREO0750

PREO0760

PREO0770

PREO0780

PREO0790

PREOO80O

PREO0810

PREO0820

PREO0830

PREO0840

PREO0850

PREO0860

PREO0870

PREO0880

PREO0890

PREO0900

PREO0910

PREO0920

PREO0930
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5.6.- Program LUDECT. The Solution of Systems of Linear

Algebraic Equations with Tridiagonal Matrices.

C......... THIS PROGRAM SOLVES THE SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

C ....... M X = BB BY L-U DECOMPOSITION . HERE A(N) IS THE VECTOR

C ....... FORMED BY THE DIAGONAL ELEMENTS OF M , B(N) AND C(N) ARE,

C ....... RESPECTIVELY THE VECTORS FORMED BY THE ELEMENTS ALONG THE

C ....... LOWER AND UPPER DIAGONALS OF M . EL(N) IS THE VECTOR FORMED

C ....... BY THE ELEMENTS ON THE LOWER TRIANGULAR MATRIX AFTER L-U

C ....... DECOMPOSITION • UP(N) IS THE VECTOR OF THE UPPER TRIANGULAR

C ....... ELEMENTS . X(N) IS THE SOLUTION VECTOR AND N IS THE SIZE

LUDO0010

LUDO0020

LUDO0030

LUDOOD40

LUDO0050

LUDO0060

LUDO00?O

LUDO0080

C ....... OF THE ORIGINAL SYSTEM . LUDOOO90

C ......... THE PROGRAM IS DESIGNED SPECIFICALLY TO DEAL WITH TRIDIAGONAL LUDOOIOO

C ....... MATRICES AND THE SPECIFIC EXAMPLE HERE IS FOR THE CASE WHEN LUDO0110

C ....... M HAS 2'S ALONG THE MAIN DIAGONAL AND 1'S ALONG THE LUDOOI20

C ....... NEIGHBORING DIAGONALS . LUDOOI30

C ......... THE VECTOR ON THE RHS BB(N) IN THIS CASE HAS ALL COMPONENTS LUDOO140

C ..... _- EQUAL TO ZERO EXCEPT THE FIRST . LUDO0150

10

20

30

5O

REAL A(IO),B(IO),C(IO).BB(IO).EL(IO),UP(ID),D(IO)

REAL Y(IO),X(IO)

N=IO

DO 5 I=I,N

A(I)=2.

B(I)=-I.
c(I)=-1.
BB(I)=O.

CONTINUE

BB(1)=I.

D(1)=A(1)

UP(1)=C(1)

DO 10 I=2.N

IMI=I-I

EL(1)= B(I)/D(IMI)

D(I) = A(I) - EL(1)*UP(IMI)

UP(I)=C(I)
CDNTINUE

y(i)=BB(1)

DO 20 I=2,N

IMi=I-I

Y(1) = BB(I) EL(1)*Y(IMI)

CONTINUE

X(N)=Y(N)/D(N)

DO 30 IK:2,N

I=N+I-IK

IPI=I+I

X(I): (I/D(I))*(Y(1) - UP(I)*X(IPI))

CONTINUE

WRITE(6,50) (X(I),I=I,N)

FORMAT(SX,FIS.8)

STOP

END

LUDO0160

LUDO0170

LUDO0180

LUDO0190

LUDO0200

LUDO0210

LUDO0220

LUDO0230

LUDO0240

LUDO0250

LUDO0260

LUDO02?O

LUDO0280

LUDO0290

LUDO0300

LUDO0310

LUDO0320

LUDO0330

LUDO0340

LUDO0350

LUDO0360

LUDO03?O

LUDO0380

LUDO0390

LUDO0400

LUDO0410

LUDO0420

LUDO0430

LUDO0440

LUDO0450

LUDO0460

LUDO04?O

LUDO0480

LUDO0490

LUDO0500

138



5e7e_ Program PS . The Calculation of Heat Flow Including

Convection. Patankar-Spalding Method .

COMMON/IND/R,HO,OMEG,Q,EMU.PL,TCL,TCS.RHO,CP

COMMON/ROLL/TROLL.HTC,TCR.ALFR

COMMON/ZONE/X.XI.X2,X3,X4.DX,DT.XN,IVV

COMMON/NODES/NX,NY,III

COMMON/COEF/ BI,B2,B3,B4,B5

COMMON/VEL0/VELX(12,6),VELY(12,6)

COMMON/TEMP/TA(12,6),T(12,6),CR(12,6).RE(12,6)

DIMENSION TOLD(12,6)

C

C ........ THIS PROGRAM DIRECTS THE CALCULATION OF FLOW AND TEMPERATURE

C ...... IN LUBRICATION TYPE FLUID FLOW CONFIGURATIONS.

C ........ TOLD IS THE INITIAL (GUESSED) TEMPERATURE FIELD.

C

C ......... BOTH , NEWTONIAN AND NON-NEWTONIAN POWER LAW FLUIDS CAN

C ....... BE CONSIDERED .

DATA TOLD/72*760.O/

C DATA TOLD/72*66D.O/
C

C .......... FOLLOWING ARE THE GEOMETRICAL AND MATERIALS DATA REQUIRED PS

C ..... R=ROLL RADIUS(CM),HO:MINIMUM GAP(CM),OMEG=RPM OF ROLL PS

C ..... Q=VOLUMETRIC FLOW RATE PER UNIT WIDTH(CM2/S) PS

C ..... PLL=POWER LAW EXPONENT FOR LIQUID,PLS=POWER LAW EXPONENT FOR SOLIDPS

C ..... EMUL=VISCOSITY OF THE LIQUID(G/CM S) PS

C ..... B=FLUIDITY OF THE SOLID (UNITS DEPEND ON PLS) PS

C ..... TCL=THERMAL CONDUCTIVITY OF THE LIQUID(CAL/CM S K) PS

C ..... TCS=THERMAL CONDUCTIVITY OF THE SOLID(CAL/CM S K) PS

C ..... RHO=DENSITY(G/CM3),CP=SPEClFIC HEAT(CAL/G K) PS

C ..... TROLL=TEMPERATURE OF THE ROLL (K) PS

PSIO00tO

PSIO002O

PS100030

PS100040

PStO0050

PS100060

PS100070

PSIO0080

PS100090

PSIO0100

PS100110

PS100120
PS100130

PS100140

PS100150

PS100160

PS100170

PS100180

100190

100200

100210
100220

100230
100240

100250

100260

100270

100280

C ..... HTC=HEAT TRANSFER COEFFICIENT TO THE ROLL (CAL/CM2 S K)

C ..... TCR=THERMAL CONDUCTIVITY OF THE ROLL (CAL/CM S K)

C ..... ALFR=THERMAL DIFFUSIVITY OF THE ROLL (CM2/S)

C ..... XI=LOCATION OF NEUTRAL AND LIFT-OFF POINTS (CM)

C ..... X2=LOCATION OF THE END OF SOLIDIFICATION (CM)

C ..... X3=LOCATION OF THE BEGINING OF SOLIDIFICATION (CM)

C ..... X4=LOCATION OF THE ENTRANCE TO THE ROLL GAP (CM)

C ..... NX=NUMBER OF GRIDS ALONG X, NY=NUMBER OF GRIDS ALONG Y

C ..... DX=GRID SPACING ALONG X (CM),DY=GRID SPACING ALONG Y (CM)

C ..... XN=EXPONENT TO DESCRIBE THE SLIP IN VELOCITY AT THE SPLAT/ROLL

C ..... OT=FICTIClOUS TIME STEP REQUIRED IN THE HEAT FLOW EQUATION (S)

C

R= 5.0

HO= 0.005

OMEG= 160.0

Q= 1.0

PLS= 4.5

B= 0.0000000126

PLL= 1.0

EMUL= 0.01
TCL= 0.15

TCS= 0.50

RHO= 2.7

CP= 0.25

TROLL= 25.0

HTC= 1.0

TCR= 0.1

PS100290

PS100300

PS100310

PSlO0320

PS100330

PS100340

PS100350

PS100360

P5100370

PS100380

PS100390

PSIOO4OO

PSIOO410

PSIOO420

PSIOO430

PSIOO440

PSIOO450

PSIOO4GO

PSIOO470

PSIOO480

PSIOO490

PSIOO5OO

PSIOOSIO

PSIOO520

P5100530

PS100540
PS100550
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ALFR= O. 10

C

C ..... ASSUMED VALUES OF XI,X2,X3 AND X4

C

COEO = Q.60./(3. 1416*OMEG)

COEI= HO+R

COE2= SORT( COEI**2. - COEO )

COE3= (COEI + COE2)/2.

Xl= SORT( ABS( R*R -COE3*COE3 ) )

C X2= -0.57

X2= X 1

X3= X 1

X4= -0.90

C

C ..... GRID PARAMETERS

C

NX: 12

NY= 6

C DXL= 0.011

DXL: -(X4-X|)/FLOAT(NX-I)

C DXL: -(X4-X3)/FLOAT(NX)

C DXS= 0.0633333

DXS= -(X2-X1)/FLOAT(NX)

CC ..... STEP SIZE FOR THE CALCULATION OF THE MAXIMUM LOAD _N THE ROLLS
CC DXS= -(X4+XI)/(FLOAT(NX))

DT= I.O

C

C ..... EXPONENTS OF THE SLIP COEFFICIENT.

C

XNL= O. 5

XNS= O. O

C

C ............... HERE ANY OF X=X4 OR X=X2 MUST BE CHOSEN ACCORDING

C .............. TO THE DESIRED CALCULATION.IF CALCULATIONS ARE DESI-

C .............. RED IN THE LIQUID REGION CHOSE THEN X:X4.SELECT X:X2

C .............. FOR COMPUTATIONS IN THE (FULLY) SOLID REGION.

C

X= X4

C X= X2

C

C ........ THE NEXT LOOP CREATES THE INITIAL TEMPERATURE FIELD TO BE

C ........ SENT TO THE ROUTINE THAT SOLVES THE HEAT FLOW PROBLEM.
C

DO I I = I,NX

D02d=I,NY

TA(I,d)= TOLD(I,d)

CONTINUE

CONTINUE

2

1

C

C ...... THE FOLLOWING CONDITION COLLECTS ADDITIONAL VALUES WHICH ARE

C ...... FIXED AS SOnN AS X HAS BEEN SELECTED.

C

IF(X.GE.X2) GO TO 10
9 CONTINUE

DX= DXL

PSlO0560

PSI00570

PSIOO5BO

PS100590

PS100600

PSIOO6fO

PS100620

PS100630

PS100640

PS100650

PS100660

PS100670

PSIOO680

PSIOO690

PS100700

PS100710

PS100720

PS100730

PS100740

PSI00750

PSI00760

PSI00770

PS_OO7BO

PSIO0790

PSIO0800

PS100810

PSiO0820

PS100830

PS100840

PS100850

PS100860

PSI00870

PS100880

PS100890

PS100900

PS100910

PS100920

PS100930

PS100940

PS100950

PS100960

PSt00970

P5100980

PS100990

PSI01000

PSIOIOIO

PSIOI020

PS101030

PS101040

PS101050

PS101060

PS101070

PS101080

PS101090

PS101100
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XN: XNL

EMU = EMUL

PL: PLL

TC= TCL

GO TO 20

IO CONTINUE

DX= DXS

XN= XNS

EMU= (1./B)

PL= PLS

TC= TCS

20 CONTINUE

C

WRITE(6,99) R,HO.OMEG,Q.EMUL,PLL,B,PLS.TCL,TCS,RHO.CP

WRITE(6,99) TROLL,HTC,TCR,ALFR

WRITE(6,99) X,XI,X2,X3,X4,DX,DT,XN

WRITE(6,g8) NX,NY
C

C ..... THE ROUTINES FOR THE CALCULATION OF VELOCITY AND TEMPERATURE

C ..... FIELDS ARE CALLED NOW. DEPENDING ON THE REGION OF CALCULATION

C

C

91

C

C

92

C ..... SELECT EITHER

C

X= X4

CALL VELOZ

GO TO 100

CONTINUE

X= X4+DX

DO 92 I=I,NX

DO 92 J=I,NY

T(I,d)=TA(I,J)

CONTINUE

CALL TDMA

95

94

93

9"/

66

C

C

98

99

t00

X=X4+DX OR X:X2+DX .

DO 93 III=l,800

RESMAX=O.O

DO 94 IV:I.NX

DO 95 JV:I,NY

IF(RESMAX.LT.RE(IV,JV)) RESMAX=RE(IV.JV)

RE(IV,JV)=O.O

CONTINUE

CONTINUE

IF(RESMAX.LT.O.O001) GO TO 97

CONTINUE

CONTINUE

WRITE(6,99) ((T(I,J),d=I,NY),I=I,NX)

WRITE(6,66) RESMAX,III

FORMAT(//,25X,E12.5,3X,I3)

WRITE(6,99) R.HO,OMEG.Q,EMUL,PLL.B,PLS,TCL.TCS,RHO,CP

FORMAT(/2OX.2IIO///)

FORMAT(IX.6E12.5)
CONTINUE

STOP

END

PSt01110

PSI01t20

PSI01130

PS101140

PS101150

PS101160'

PS101170,

PS101180

PS101190

PS101200

PS101210

PS101220

PS101230

PSlOf240

PS101250

PS101260

PS101270

PS101280

PSI01290

PSI01300

PS101310

PS101320

PS101330

PSt01340

PS101350

PS101360

PS101370

PS101380

PS101390

PS101400

PS101410

PS101420

PS101430

PS101440

PS101450

PS101460

PS101470

PS101480

PS101490

PS101500

PSI01510

PS101520

PS101530

PS101540

PS101550

PS101560

PS101570

PS101580

PS101590

PS101600

PS101610

PS101620

PS101630

PS101640

PS101650

PS101660

PS10t670
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SUBROUTINEVELOZ
C.......... THISROUTINECOMPUTESTHEVELOCITYFIELD.
C

C0MMON/IND/R,H0,OMEG,Q,EMU,PL,TCL,TCS,RH0,CP
COMMON/ZONE/X,XI,X2,X3.X4.DX,DT,XN,IVV
COMMON/NODES/NXoNY
COMMON/VELO/VELX(12,6),VELY(12,6),Z(12,6),ST(12,6)
COMMON/COEF/BI,B2,B3,B4,B5
DIMENSIONVELOX(24,12}.VELOY(24,12),ZTNT(24,12),STRE(24,12)
DIMENSIONP(26)

C
C.......... CALCULATIONOFTHEVELOCITYFIELD
C..... THEVALUESOFTHEFUNCTIONSTHATONLYDEPENDON X ARE COMPUTED

C ..... FIRST, WITH THE MAIN DO LOOP.THE VELOCITIES ARE CALCULATED SUB-

C ..... SEQUENTLY FOR FIXED X AND VARYING Y.

C ..... MAIN DO LOOP

PBRY = IOIOOOO.O

DX: DXI2.

NNX= NX_2 - I

D0 I I=I,NNX

HI= H(R,HO.X)

BI= VRXP(OMEG.R.X,Q.HO.×2.X4,XN.Xl)

B2: A(R,X,OMEG,HO,PL,Q.X2,X4,XN.XI)

B3= COEFI(R,X.OMEG.HO.PL.Q.X2.X4,XN.XI)

B4= DADX(R,X,Q.OMEG.HO.PL,X2.X4.XN.XI)/(PL+2. )

BS= VRYP(OMEG,R,X.Q.HO.X2.X4.XN.XI)

SS = 2.*EMU*B2*HI

DPDX= (((PL+I.)**(1./PL))*EMU)*((ABS(B2))**((I./PL)-I.))*B2

P(I) = PBRY + DPDX*DX

C WRITE(6,3) BI,B2,B3,B4.B5.SS,DPDX

3 FORMAT(IX,TEl1.4)

C WRITE(6,33) X,DPDX,P(I].HI

33 FORMAT(5X,4E15.7)

34 FORMAT(2X,SE12.5)

C

C ..... SECONDARY DO L00P.THE VELOCITIES ARE COMPUTED FOR THE NY NODES

C ..... LYING ALONG THE I-TH X-STEP.

C

Y=O. O

NNY= NY*2 -I

DO 10 J=IoNNY

HI:H(R,HO,X)

DY=HI/(2.*(FLOAT(NY-I)))

C ............... CALCULATION OF VELOCITY COMPONENTS

VX= BI + B2*(Y**(PL+I.O) - HI**(PL+I.O))

VY = B3*Y + B4*Y**(PL+2.)

C ............... CALCULATION OF INTENSITY OF THE RATE OF DEFORMATION

ZZ=(ABS(B2*(PL+I.)*Y**PL))**2.
C ............... CALCULATION OF THE STREAM FUNCTION

PSI: ((BI - B2*HI**(PL+f.O))*(HI-Y) +

1 (B2*(HI**(PL+2.) - Y**(PL+2.)))/(PL+2.))*2.0/Q

IF(PSI.LE.O.OOOI) PSI=O.O

WRITE(6,34) BI,VX,VY,ZZ,PSI

CALCULATED VALUES ARE STORED IN ARRAYS

C

C ..... THE

PS200010

PS200020
PS200030

PS200040

PS2OOOBO

PS200060

PS200070

PS200080

PS200090

PS200100

PS200110

PS200120

PS200130

PS200140

PS200150

PS200160

PS200170

PS200180

PS200190

PS200200

PS200210

PS200220

PS200230

PS200240

PS200250

PS2OO2GO

P_200270

PS200280

PS2OO2gO

PS200300

PS200310

PS200320

PS200330

PS200340

PS200350

PS200360

PS200370
PS200380

PS2OO3gO

PS200400

PS200410

PS200420

PS200430

PS200440

PS200450

PS200460

PS200470

PS2OO4BO

PS2OO4gO

PS200500

PS200510

PS200520

PS200530

PS200540

PS200550
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C

Y = Y +DY

10 CONTINUE

C ..... END OF INNER LOOP

X=X+DX

I CONTINUE

C

C ..... OUTER LOOP CONCLUDED

C

150

C

160

C

174

VELOX(I,J)=VX

VELOY(I.J)=VY

ZINT(I.J)=ZZ

STRE(I,J)=PSI

DO t50 I=2,NNX.2
DO 150 J=I,NNY.2

K=I/2

L=(d+l)/2

VELX(K,L)=VELOX(I.J)

CONTINUE

DO 160 I=3,NNX.2

DO 160 d=2,NNY,2
K=(I+l)/2

L=JI2

VELY(K,L)= VELOY(T,J)
CONTINUE

GO TO 180

CONTINUE

C ..... WRITING OF THE RESULTS

C

C. WRITE(6,177)

177 FORMAT(/25X,IOHVELOCITY-X)

WRITE(6,176) ((VELX(I.d),U=I,NY),I=I,NX-I)

175 CONTINUE

C GO TO 180

1755 CONTINUE

C WRITE(6,178)

178 FORMAT(/25X,lOHVELOCITY-Y)

WRITE(6,1766) ((VELY(I,d),J=I.NY-1),I=2,NX-1)
GO TO 180

1788 CONTINUE

C WRITE(6,179)

179 FORMAT(/15X.32HINTENSITY OF RATE OF DEFORMATION)

WRITE(6,176) ((Z(I,J),d=I,NNY),I=I,NNX)

C WRITE(6,181)

181 FORMAT(/25X,15HSTREAM FUNCTION)

WRITE(6,1?6) ((ST(I,J),J=I,NNY),I=I,NNX)

180 CONTINUE

t76 FORMAT(1X,6E12.5)

1766 FORMAT(IX,5E12.5)

C180 CONTINUE

RETURN

END

PS2OO560

PS2OO570

PS200580

PS2OO590

PS2OO6OO

PS2OO610

PS2OO620

PS2OOG30

PS200640

PS2OO650
PS2OO660

PS2OO670

PS200680

PS2OO690

P52OO7OO

PS2OO710

PS2OO720

PS200730

PS2OO740

PS200750

PS2OO760

PS2OO770

PS2OO780

PS2OO790

PS2OO8OO

PS200810

PS2OO820

PS2OO830

PS200840

PS200850

PS2OO860

PS200870

PS2OO880

PS2OO890

PS2OO9OO

PS2OO910

PS2OO920

PS2OO930

PS2OO940

PS2OO950

PS2OO960

PS200970

PS2OO980

PS200990

PS2010OO

PS201OIO

PS201020

PS201030

PS201040

PS201050

PS201060

PS201070

PS201080
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C......... THEFOLLOWINGFUNCTIONSAREREQUIRED
C....... OFTHEFLOW.
C

FUNCTIONH(R,HO,X)
C H=HO+R-SQRT(R*R-X*X)

H:HO(1. + O,05*(X/X4))

RETURN

END

C

C ..... X-COMPONENT OF THE TANGENTIAL VELOCITY OF

C

FUNCTION VRX(OMEG,R,X)
VRX=2.*3.t41B*OMEG*SQRT(R*R-X*X)/60.

RETURN

END

C

C ..... Y-COMPONENT OF THE TANGENTIAL VELOCITY OF

C

FUNCTION VRY(OMEG,R,X)

VRY= 2.*3.1416*OMEG*X/60.O

RETURN

END

C

C ..... DERIVATIVE OF H (DIMENSIONLESS)

C

FUNCTION DHDX(R,X)

OHOX:X/SQRT(R*R-X*X)

RETURN

END

C

C ..... DERIVATIVE OF VRX (I/S)

C

FUNCTION OVRXDX(OMEG,R,X)

Cl=2.*3.1416*OMEG/60.

DVRXDX:-CI*(X/SQRT(R*R-X*X))

RETURN

END

C

C ..... FLOW COEFFICIENT (UNITS DEPEND ON THE MATERIAL)

C

FUNCTION A(R,X,OMEG,HO,PL,Q,X2,X4,XN.XI)

VR=VRXP(OMEG,R,X,Q,HO,X2,X4.XN,XI)

HI= H(R,HO,X)

CI=(PL+2.)*(VR*HI-Q/2.)/(PL_t.)

C2=HI**(PL+2.)

A= c_/c2
RETURN

END

C

C ..... DERIVATIVE OF THE FLOW COEFFICIENT

C

FUNCTION DADX(R,X,O,OMEG,HO,PL,X2.X4,XN,X1)

VR=VRXP(OMEG, R, X, Q, HO, X2, X4, XN,X 1 )

VRP=OVRXPP(OMEG,R.X.Q,HO,X2.X4,XN,XI)

HI= H(R,HO,X)

FOR THE COMPUTATION

THE ROLLS(CM/S)

THE ROLLS(CM/S)

(VARIABLE UNITS)

PS300010

PS300020

PS300030

PS300040

PS300050

PS300060

PS300070

PS300080

PS300090

PS300100

PS300110

PS300120

PS300130

PS300140

PS300150

PS300160

PS300170

PS300180

PS300190

PS300200

PS300210
PS300220

PS300230

PS300240

PS300250

PS300260

PS300270

PS300280

PS300290

PS300300

PS300310

PS300320

PS300330

PS300340

PS300350

PS300360

PS300370

PS300380

PS300390

PS300400

PS300410

PS300420

PS300430

PS300440

PS300450

PS300460
PS300470

PS300480

PS300490

PS300500

PS300510

PS300520

PS300530

PS300540

PS300550
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CI=(PL+2-)/((PL+I,)'HI*'(PL+2. )) PS300560

C2=HIIVRP+VR_DHDX(R,X) PS3OO570
C3=(PL+2.)*(VR-O/(2.*HI))_DHDX(R,X) PS3OO580

DADX=CI*(C2-C3) PS3OO590

RETURN PS3OO6OO

END PS3OO610

C PS3OO620

C ..... FLOW COEFFICENT FOR THE Y-COMPONENT OF VELOCITY (VARIABLE UNITS) PS3OO630

C PS3OO640

FUNCTION COEFI(R,X,OMEG,HO,PL,Q,X2,X4,XN.XI) PS3OO650

AA= A(R,X,OMEG,HO,PL,Q,X2,X4,XN,Xl) PS3OO660

HI = H(R,HO,X) PS3OO670

CI= ((PL+I.)_AA_HI**PL)*DHDX(R,X) PS3OO680

C2 = DADX(R,X,Q,OMEG,HO,PL,X2,X4,XN,Xl)_HI,,(PL+I.) PS3OO690

C3 = DVRXPP(OMEG,R,X,Q,HO,X2,X4,XN,XI) PS3OO?OO

COEFI=CI+C2-C3 PS3OO710

RETURN PS3OO720

END PS3OO730.
C PS3OO740

C ..... FUNCTION GIVING THE SURFACE X-VELOCITY OF THE sPLAT UNDER SLIPPINGPS3OO?50

C ..... CONDITIONS IN TERMS OF THE SLIP COEFFICIENT AND EXPONENT(CM/S) PS3OO760

C PS3OO770

FUNCTION VRXP(OMEG.R,X.Q,HO,X2,X4,XN.X1) PS3OO780

SL=S(X,X2,X4, X1) PS3OO790

VR=VRX(OMEG,R,X) PS3OO8OO

H4=H(R,HO,X4) PS3OO810

VIN=Q/(2.*H4) PS3OO820

VRXP=(VR-VIN)*SL**XN + VIN PS3OO830

RETURN PS3OO840

END PS3OO850

C PS3OO860

C ..... FUNCTION GIVING THE SLIPPED Y-VELOCITY IN THE SURFACE OF THE SPLATPS3OO870

C ..... (CM/S) PS3OO880

C PS3OO890

FUNCTION VRYP(0MEG,R.X,O.H0.X2,X4,XN.XI) PS3OO9OO

SL=S(X,X2,X4,X1) PS3OO910

VR=VRY(OMEG,R,X) P53OO920

H4=H(R,HO,X4) PS3OO930

VRYP=VR*SL**XN PS3OO940

RETURN PS3OO950

END PS3OO960
C PS3OO970

C ..... SLIP COEFFICENT (DIMENSIONLESS) PS3OO980
C PS3OO990

FUNCTION S(X,X2.X4.Xl) PS3OIOOO

C S=ABS((X4-X-.OO1)/(X4-X2-.OOI)) PS3OIO10

S=ABS((X4-X -OOI)/(X4+X1-O.OOI)) PS301020

RETURN P5301030

END PS301040

C PS3OiO50

C ..... DERIVATIVE OF THE SLIP COEFFICENT (1/CM) PS3OIO60

C PS3OIO70

FUNCTION DSDX(X2,X4,X1) PS301080

DSDX=-I./(-X4-X2) PS301090

C DSDX=-I./(X4+X1) PS3OllO0
RETURN PS3Ol110

END PS301120

C PS3Ol130

C ..... FUNCTION GIVING THE X-DERIVATIVE OF THE SLIPPED VELOCITY (I/S) PS3Ol140

C PS3Ol150

FUNCTION DVRXPP(OMEG,R,X,Q,H0,X2,X4,XN,X1) PS3Ol160

SL=S(X,X2,X4,XI) PS3Ol170

VIN:O/(2.*H(R,HO,X4)) PS3Ol180

VR=VRX(OMEG,R,X) PS3Ol190

OVRXPP:((VR-VIN)*XN)_(SL,*(XN-1.))*OSDX(X2.X4_Xl) PS3012OO

1 +(SL_*XN)*(DVRXDX(OMEG,R,X)) PS301210

RETURN PS301220

END PS3_1230
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SUBROUTINETDMA

C ........ THIS ROUTINE USES A TWO-DiMENSIONAL VELOCITY FIELD TO

C ...... COMPUTE THE CORRESPONDING TEMPERATURE FIELD.

C ........ THE ROUTINE ASSUMES NO HEAT FLOW BOTH, ACROSS THE SYMMETRY

C ...... PLANE (Y=O.O) AND THE LOWER HORIZONTAL PLANE (X=X3 OR XI) AS

C ...... WELL AS PRESCRIBED TEMPERATURE AT THE UPPER HORIZONTAL BOUN-

C ...... DARY (X=X4 OR X:X2),AND PRESCRIBED HEAT FLUX TO THE ROLLS.

C ........ THE CALCULATION PROCEEDS BY SOLVING THE SYSTEM OF NX

C ...... EQUATIONS WITH NY UNKNOWNS EACH, OBTAINED FROM FINITE-DIFFEREN-

C ...... CING OF THE HEAT FLOW EQUATION.THE METHOD IS ITERATIVE INASMUCH

C ...... AN ASSUMED TEMPERATURE FIELD IS USED TO COMPUTE AN IMPROVED

C ...... GUESS WHICH IN TURN IS USED TO COMPUTE AN EVEN BETTER GUESS.

C ...... THE PROCEDURE IS REPEATED UNTIL SATISFACTORY CONVERGENCE IS

C ...... REACHED.

C

COMMON/IND/R,HO,OMEG,Q,EMU,PL,TCL,TCS,RHO,CP

COMMON/ROLL/TROLL,HTC,TCR,ALFR

COMMON/ZONE/X,XI,X2,X3,X4,DX,DT,XN,IVV

COMMON/NODES/NX,NY,III

COMMON/VELO/VELX(12,6).VELY(12.6)

COMMON/TEMP/TA(12.6).T(t2.6).CR(12.6),RE(12.6)

COMMON/INTCOE/CO0.C10.C20.C012

C

C ...... THE FOLLOWING ARRAYS ARE NECESSARY FOR THE SOLUTION

C ....... THE SYMBOLS ARE THE SAME AS IN S.PATANKAR, NUMERICAL

C ...... HEAT TRANSFER AND FLUID FLOW, HEMISPHERE,WASHINGTON,1980,CH.5.

C

C

C---

C

C

C

C

C2

Ci

C

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

NXN=NX-I

NYN=NY-I

TCL= O. i5

TCS= 0.52

CPL= 0.25

CPS = 0.25

A(12.6).B(12.6).C(12.6).D(12.6).P(12.6).Q(12.6)

DN(6).DS(6).DE(6).DW(6)

PEN(6),PES(6).PEE(6).PEW(6)

ANt(6),ASI(6),AEI(6),AWI(6)

AN2(6),AS2(6),AE2(6),AW2(6)

COEN(6),COES(6),COEE(6),COEW(6)
TG(12,6)

---THE FOLLOWING LOOP ONLY INITIALIZES THE TEMPERATURE FIELD

DO I I:I,NX

DO 2 d:I,NY

T(I,U)=TA(I,U}

CONTINUE

CONTINUE

C ...... THE FOLLOWING LOOP CONTROLS THE ITERATIONS

C

C DO 3 III=1,8OO

C00=25.

cIo=o.

C20=0.0

PS4OOOIO_

PS4OOO20

PS400030

PS40OO40

PS4OOO50

PS4OOO60

PS4OOO?O

PS4OOO80
PS4OOO90

PS4OO1OO

PS4OO110

PS4OO120

PS4OO130

PS4OOt40,
PS4OO150

PS4OO160

PS4OO170

P54OO180

PS4OO190

PS4OO2OO

PS4OO210

PS4OO220

PS4OO230

PS4OO240

PS4OO250

PS4OO260

PS4OO270

PS4OO280

PS4OO290
PS400300

PS4OO310

PS4OO320

PS4OO330

PS4OO340

PS4OO350
PS4OO360

PS4OO370

PS4OO380

PS4OO390

PS4OO4OO

PS400410

PS400420

PS400430

PS4OO440

PS4OO450

PS4OO460

PS4OO470

PS4OO480

PS4OO490

PS4OO5OO

PS4OO510

PS4OO520

PS4OO530

PS4OO540

PS4OO550
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C
C...... THEFOLLOWINGLOOPADVANCESTHESOLUTIONIN THEX DIRECTION.
C...... THECOMPUTATIONBEGINSATI=2 BECAUSEAT I=I THETEMPERATURES
C---i--ARE GIVENASBOUNDARYCONDITIONBYTHEPOURINGTEMPERATUREOR
C ...... THE SOLIDUS TEMPERATURE,DEPENDING ON THE REGION OF COMPUTATION.

C

DO IO I=2,NXN

CC DTI=tOO..(60./(2.*3.1416*OMEG))*(DX/SQRT(R*R-(X-DX)*(X-DX)))

C

C .......... THE NEXT LOOP SETS THE INLET TEMPERATURE.

C

DO 15 J=I,NY

T(I,d)=TA(I,J)

C T(I,J)=TA(I,J) - 4.O*FLOAT(J) + 4.

15 CONTINUE

C

C ...... WE BEGIN NOW THE CALCULATION OF THE COEFFICIENTS FOR THE HEAT

C ...... FLOW EQUATION (DISCRETIZED).

C .......... THE NODES ALONG THE SYMMETRY LINE (Y=O.O) HAVE COEFFICIENTS

C .......... GIVEN BY THE SYMMEIRICAL BOUNDARY CONDITION.

C

A(I,I)=I.

B(I.1)=t.

c(i.1)=o.
D(I.1)=O.

C

C ..... _ .... CALCULATION OF THE COEFFICIENTS FOR GAUSS ELIMINATION

C .......... FOR THE NX NODES LYING ALONG THE SYMMETRY LINE(I.I)

C

P(I,1)=B(I,1)/A(I,1)

Q(I,I)=D(I,I)/A(I,I)

C

C ...... WE CONTINUE NOW WITH THE SECONDARY LOOP WHICH ADVANCES THE CAL-

C ...... CULATION OF THE COEFFICIENTS ALONG THE Y-DIRECTION.

C

DO 20 J=2,NYN

C
C ......... THE NEXT CONDITION IS REQUIRED TO MAINTAIN THE VALUES OF TC

C ......... AND CP THROUGHOUT THE CALCULATION. IT ENDS IN LABEL 5.

C

IF (X.GE.X2) GO TO 4

TC= TCL

CP= CPL

GO TO 5

4 CONTINUE

TC= TCS

CP = CPS

5 CONTINUE

HT=H(R,HO,X)

DOY=HI/(FLOAT(NYN))

IF(J.GE.NY) GO TO 21

dd=d+l

ddd:d-I

C

C ...... CALCULATION OF THE COEFFICIENTS FOR THE INTERNAL GRID POINTS.

PS400560

PS400570
PS4OOSBO

PS400590

PS400600

PS400610

PS400620

PS400630

PS400640

PS400650

PS400660

PS400670

PS400680

PS400690

PS400700

PS400710

PS400720

PS400730

PS400740

PS400750

PS400760

PS400??O

PS400780

PS400790

PS400800

PS400810

PS400820

PS4OOB30

PS4OOB40

PS400850

PS400860

PS400870

PS400880

PS4OOB90

PS400900

PS400910

PS400920

PS400930

PS400940

PS400950

PS400960

PS400970

PS400980

PS400990

PS4OIOOO

PS401010

PS401020

PS401030

PS401040

PS401050

PS4OIO60

PS401070

PS401080

PS4OIOgO

PS401100
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C .......... COEFFICIENTS ON THE NORTH SIDE (Y+).

C

DN(j)=TC*DX/(CP*DDY)

PEN(J)=ABS(VELY(I,jJ)*DDY*RHO*CP/TC)

ANI(J)=AMAXI(O.,((ABS(I.-O.I*PEN(d)))**4.)*(I.-O.I,PEN(d)))

AN2(J)=AMAXI(-RHO*DX,VELY(I,Jj),O.)

C

C .......... COEFFICIENTS ON THE SOUTH SIDE (Y-).

C

DS(U):TC*DX/(CP*DDY)

PES(J)=ABS(VELY(I,dJJ)*DDY*RHO*CP/TC)

ASI(J)=AMAXI(O.,((ABS(I.-O.I*PES(J)))**4.)*(I.-O.I*PES(J)))

AS2(J):AMAXI(RHO*DX*VELY(I,JJJ),O.)

C

C .......... COEFFICIENTS ON THE EAST SIDE (X+).

C

DE(J)=TC*DDY/(CP*DX)

PEE(J)=ABS(VELX(I+I.J)*DX*RHO*CP/TC)

AEI(J)=AMAXI(O..((ABS(I.-O. I*PEE(J)))**4.)*(I.-O.I*PEE(J)))

AE2(J)=AMAXI(-RHO*DDY*VELX(I_I,J),O.)

C

C .......... COEFFICIENTS ON THE WEST SIDE (X-).

C

DW(J)=TC*DDY/(CP*DX)

PEW(d)=ABS(VELX(I-I,J)*DX*RHO,CP/TC)

AWI(J)=AMAXI(O..((ABS(I.-O. I*PEW(J)))**4.)*(I.-O. I,PEW(J)))

AW2(j)=AMAXI(RHO*DDY*VELX(I-I,J),O. )

C

C ........ CALCULATION OF

C

GLOBAL

C

C ....... CALCULATION

C

COEFFICIENTS FOR N,S,E,AND W

COEN(d):DN(d)*ANI(J) + AN2(d)

COES(d):DS(d)*ASI(d) + AS2(J)

COEE(d)=DE(d)*AEI(J) + AE2(d)

COEW(J)=DW(J)*AWI(J) + AW2(J)

AO:RHO*DX*DDY/DT

OF THE MAIN COEFFICIENTS.

A(I,J)=COEN(J)+COES(J)+COEE(J)+COEW(J)+AO

B(I,J)=COEN(J)

C(I,J)=COES(J)

D(I,d)=COEE(J)*TA(I+I,d)+COEW(d)*T(I-I,j)+AO*TA(I,J)

C

C ....... CALCULATION OF THE COEFFICIENTS FOR THE GAUSS ELIMINATION

C ....... FOR THE INTERNAL NODES (I:2,NX-I;J=2,NY-I).

C

C

20

C

C ............ END OF INNER LOOP.

C

21 CONTINUE

C

PS401110

PS401120

PS401t30

PS401140

PS401150

PS401160

PS401170

PS401t80

PS401190

PS401200

PS401210

PS40t220

PS401230

PS401240

PS401250

PS401260

PS401270

PS401280

PS401290

PS401300

PS401310

PS401320

PS401330

PS401340

PS401350.

PS401360

PS401370

PS401380

PS401390

PS401400

PS401410

PS401420

P5401430

PS401440

PS401450

PS401460

PS401470

PS401480

PS401490

PS401SO0

PS401510

PS401520

PS401530

PS401540

PS401550

PS401560

P(I,J)=B(I,J)/(A(I,J)-C(I,d)*P(I,JJJ)) PS401570

Q(I,J)=(D(I,J)+C(I,J)*Q(I,JJJ))/(A(I,J)-C(I,J)*P(I,JdJ))PS401580

PS401590

CONTINUE PS401600

PS40i610

PS401620

PS401630

PS401640

PS401650
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C
C...... THERMAL BOUNDARY CONDITION AT STRIP/ROLL INTERFACE.

CC ........................ INTRODUCTION OF IDEAL COOLING.

CC IVV=I-I

CC CALL IDEALC

CC A(I,NY)=TC/DDY + TCR/SQRT(3.1416*ALFR*DTI)

CC D(I,NY)=TCR*CO12/SORT(3.1416*ALFR*DTI)
C

C ........ CALCULATION OF THE EFFECTIVE HEAT TRANSFER COEFFICIENT

C
VR=VRX(OMEG,R,X)

VRP=VRXP(OMEG,R,X,O,HO,X2,X4,XN,X1)

HTCP=HTC*(VRP/VR)

C

C .......... USE OF THE HEAT TRANSFER COEFFICIENT FOR BOUNDARY NODES

C .......... AT THE SPLAT/ROLL INTERFACE.

C

A(I,NY)= TC/DDY + HTCP

B( I ,NY )=O.

C(I,NY)=TC/DOY

D(I,NY)= HTCP*TROLL

C

C ...... AT THIS STAGE, THE VALUES OF ALL THE COEFFICIENTS FOR THE NY

C ...... Y-NODES LYING AT THE I-TH X-STEP,HAVE BEEN CALCULATED.

C

C ..... EVALUATION OF THE N-TH COEFFICENT FOR THE GAUSS ELIMINATION.

C ..... COEFFICIENT MAKE EQUAL TO THE TEMPERATURE OF NODE I,NY.

C

Q(I,NY)=(D(I,NY)+C(I,NY)*Q(I,NYN))/(A(I,NY)-C(I,NY)*P(I,NYN))

T(I,NY)=Q(I,NY)

C

C ..... THE FOLLOWING RECURSIVE NODE COMPUTES TEMPERATURES FOR NODES

C ..... LYING ALONG THE I-TH X-STEP, TRAVELING FROM THE SPLAT/ROLL

C ..... INTERFACE TOWARDS THE CENTER OF THE SPLAT.

C

DO 30 K:I,NYN

KK=NY-K

KKK=NY+I-K

T(I,KK)=P(I,KK)*T(I,KKK) + Q(I,KK)

30 CONTINUE

C

C .......... THE FOLLOWING LOOP COMPUTES THE RESIDUAL BETWEEN THE

C .......... FRESHLY CALCULATED TEMPERATURE FIELD AND THE ONE OBTAINED

C .......... FROM THE PREVIOUS ITERATION.

C

DO 35 KL:I,NY

RE(I,KL):(ABS(TA(I,KL)-T(I,KL)))/TA(I,KL)

35 CONTINUE

C

C ................ THE NEXT LOOP CREATES A NEW (IMPROVED) GUESS FOR

C ................ THE TEMPERATURE FIELD FROM THE FRESHLY CALCULATED.

C

DO 40 L=I,NY

TA(I,L)=T(I,L)

40 CONTINUE

PS401660

PS401670

PS401680

ps401690
PS401700

PS401710

PS401720

PS401730

PS401740

PS401750

PS401760

PS401770

PS401780

PS401790

PS401800

PS4OIBIO

PS401820

PS401830

PS401840

PS401850

PS401860

PS401870

PS401880

PS401890

PS401900

PS401910

PS401920

PS401930

PS401940

PS401950

PS401960

PS401970

PS401980

PS401990

PS402000

PS402010

PS402020

P5402030

PS402040

PS402050

PS402060

PS402070

PS402080

PS402090

PS402100

PS402110

PS402120

PS402t30

PS402140

PS402150

PS402160

PS402170

PS402180

PS402190

PS402200
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IF(I.GE.NX) GO TO 60 PS402210

10 CONTINUE PS402220

C PS402230

C ........ END OF MAIN (X) LOOP.AT THIS STAGE THE ENTIRE TEMPERATURE FIELDPS402240

C ........ IS KNOWN EXCEPT THE VALUES FOR THE NY GRID POINTS LYING ALONG PS402250

C ........ THE NX-TH X-STEP.

C

60 CONTINUE

C
C ..... _--THE NEXT LOOP USES THE BOUNDARY CONDITION OF ZERO HEAT FLOW

C ........ ALONG THE X-DIRECTION AND COMPLETES THE TEMPERATURE FIELD.

C
DO 80 LL=I,NY

C T(NX,LL) = 660.

C TA(NX,LL)= 660.
T(NX,LL)=T(NXN,LL)

TA(NX,LL)=TA(NXN,LL)

RE(NX,LL)=RE(NXN,LL)

CONTINUE8O

8t

C

GO TO 700

CONTINUE

C .......... THE NEXT LOOP SCANS THE ENTIRE TEMPERATURE FIELD COMPARING

C .......... THE FRESH VALUES WITH THOSE OBTAINED FROM THE PREVIOUS ITE-

.......... RATION AND LOOKS FOR THE LARGEST RESIDUAL.

C

C RESMAX=O-O

C DO 85 IV=I,N×

C DO 90 JV:I,NY

C IF(RESMAX.LT.RE(IV.JV)) RESMAX=RE(IV,JV)

C RE(IV,JV) =0-0

90 CONTINUE

85 CONTINUE

C

C ............... SATISFACTION OF THE CRITERION FOR CONVERGENCE.

C

C IF(RESMAX.LT.O.0001) GO TO 69

C3 CONTINUE

C

69 CONTINUE

C69 X3:X

C
C ......... WRITING OF THE CONVERGED TEMPERATURE FIELD.

C
WRITE(6,100) ((T(I,J),J=I,NY),I=I, NX)

C

C ................ CALCULATION OF COOLING RATE FIELD.

C

DO 76 IK=2,NX

IIK=IK-I

DO 75 JK:I,NY

TG(IK,JK)=(TA(IK.JK)-TA(IIK.JK))/DX

CR(IK,JK)=ABS((TG(IK.JK))*(VELX(IK,JK)))

75 CONTINUE

76 CONTINUE

C
C .......... WRITING THE FINAL COOLING RATE FIELD.

C
WRITE(6,100) ((CR(I,J), J=I,NY),I=I'NX)

WRITE(6,66) RESMAX,III

66 FORMAT(//,25X,E12.5,3X,I3)

I00 FORMAT(IX,6E12.5)

700 RETURN

END

PS402260

PS402270

PS402280

PS402290

PS4023OO

PS402310

PS402320

PS402330

PS402340

PS402350

PS402360

PS402370

PS402380

PS402390

PS4024OO

PS402410

PS402420

PS402430

PS402440

P5402450

PS402460

PS402470

PS402480

PS402490

PS4025OO

PS402510

PS402520

PS402530

PS402540

PS402550

PS402560

PS402570

PS402580

PS402590

P54026OO

PS402610

PS402620

PS402630

PS402640

PS402650

PS402660

PS402670

PS4026BO

P5402690

PS4027OO

PS402710

PS402720

PS402730

PS402740

PS402750

PS402760

PS402770

PS402790

PS402790

PS4028OO

PS402810

PS402820
PS402830

PS402840
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APPENDICES

2A. i.- A Comment on the Relationship Between the Size of

Microstructural Features and the Casting Parameters.

Many rapidly solidified samples have been observed to have

mlcrostructures reminiscent of the well known cellular-dendritlc

structures typical of more conventionally cast samples. The

main difference is that the size of these mlcrostructural fea-

tures becomes smaller the larger the rate of heat extraction

from the sample. During the past few decades metallurgists have

been searching for appropriate correlations capable of represent-

ing the relationship between the microstructural features and

the solidification parameters. A convenient measure of the effect

of casting parameters on the material mlcrostructure has been

found to be the so called dendrite arm spacing (i.e. the center

to center distance between neighboring dendrite arms). Both

primary and secondary dendrite arm spacings have been widely

used.

It is commonly believed that the dendrite arm spacing adjusts

itself to the prevailing growth conditions by reducing the

supercooling of the liquid lying between the dendrites to a

minimum value. The experimental results indicate that the prod-

uct of the temperature gradient in the liquid in front of the

solld-llquid interface, G 1 , and the growth velocity , R ,

correlates well with the measured arm spacings. The proposed

correlation has the following form ,
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-- n

= B1 ( G1 R ) (i)
S

Note that , in Eqn(1), the product G I R has the units of

cooling rate (i.e. °C/s) and in this sense it can be considered

as an "effective" cooling rate just ahead of the solidification

interface, i.e.

GI R = Te (2)

Although the phenomenon of dendrite arm coarsening has been

mentioned as one of the reasons for the occasional discrepancy

found between Eqn(1) and actual measurements, this process is

not believed to be very important during RS because of the

small time intervals involved in the completion of the solid-

ification. Moreover, in rapidly solidified melt spun samples,

primary and secondary dendrite arm spacings are not easily

recognized (Speck(1985)), and what one usually sees are cell-

like structures which are very fine in the portion of the splat

nearest to the wheel surface and which increase in size with

increasing distance from this surface. It has also been suggested,

(Kattamis(1981)), that the microstructural sizes measured in such

samples be considered analogous to the secondary dendrite arm

spacings observed in the more conventionally cast samples.
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The rapid solidification of eutectic alloys by coupled eutectic

growth produces a lamellar microstructure much finer than the one

found in conventionally cast samples. In this case the inter-

lamellar spacing is found to be given by

-I/2

B3 ( R ) (3)s

Equations (i) and (3) above can be used to predict the scale of

the microstructure for a wide variety of alloys once the solid-

ification conditions have been defined. The required values of the

coefficients B1 and B 3 for several alloy systems can be

obtained from Table(l) below.
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Table (2A.I.I).- Parameters for the Calculation of Cell-Secondary

Dendrite Arm Spacings from the Solidification Conditions. See Eqns

(I) and (3). From Jones(1982).

Alloy Cooling Rate Range B1 B 3 n

(wt%) (K/s) (_m/(K/s)-n) ((_m) 3/2 /sl/2 ) (_)

Sn-15Pb 0.005 - 50 23 - 0.35

AI-4.5Cu 0.00002 - 300 41 - 0.39

AI-10.5Si 400 - 1.2"105 47 - 0.33

Cu-0.5Zr i - 1"107 160 - 0.40

Inconel

718 0.i - i00

X-40

(Co-Cr) 0.i - 200

Fe-20Mn 60 - 1400

Fe-25Ni 0.001 - 1.7"106

440 S.Steel 15 - 1"105

Maraging 300

Steel 0.i - 1400

Ti- 2 to 30

AI,Fe,Ge,Mo

or V 0.2 - 150

34 - 0.34

40 - 0.27

150 - 0.25

60 - 0.32

60 - 0.41

40 - 0.30

16 - 124 - 0.3 - 0.5
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Table (2A.I.I).- (contd.)

Alloy Cooling Rate Range

0_c%) (K/s)

AI-AI2Cu not given

AI-Zn "

Bi-Zn "

Cd-Zn "

Pb-Ag "

Pb-Cd "

Sn-Ag "

Sn-Cd "

Sn-Pb "

Sn-Zn "

BI

(_m/(K/s) -n)

B 3

(_m)

10.5 - 11.8

8.0

8.3

5.3

ii .0

4.5

16.7

8.5

5.5

8.3

n

3121si/2) (-)
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3A.I.- The Governing Equations of Transport Phenomena.

Introduction

The governing equations of transport phenomenasimply express

well known facts about nature in mathematical symbols. These facts

are based on physics, specifically, Newton's laws and Thermodynamic

principles. There are two alternative ways of deriving the

governing equations for momentum,heat and mass transfer in

continua, namely;

(i) differential (shell) balances (e.g. Bird et ai(1960) and

Szekely and Themelis(1971)). In these one uses the basic laws

of physics to establish mass, momentumand energy balances over

a small volume element inside the material under study. The

partial differential equations resulting from making the volume

of the element go to zero constitute the differential balances

for all points inside the domain.

(ii) The postulational approach (e.g. Slattery(1981) and Billington

and Tate(1981)). Here one starts from a small set of postulates

(also based on basic physics) and uses a mathematical result known

as the transport theorem to arrive to the governing equations.

These equations are general and valid for all materials and must

be specialized by introducing constitutive equations of material

behavior to arrive at the forms most useful for applications.
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For the sake of completeness and since the postulational approach

does not seemto have been widely known amongmetallurgists, we

have decided to present here a brief summaryof the method. After

the derivation of the general equations for transport phenomena

we will then discuss the boundary conditions most frequently

found in fluid flow and heat and mass transfer problems. The

section concludes with a commenton the special form the equations

have for the case of the flow of thin liquid films and also the

case of flows with negligible inertia. For details, however, the

references given above should be consulted.

The Transport Theoremand the Postulates of Continuum Mechanics

The transport theorem is simply a mathematical identity which

can be proved to be satisfied by any scalar, vector, or tensor

valued function of time and position. Wewill restrict ourselves

to the presentation of two of the most useful forms of the

theorem.

If _ is a scalar, vector, or tensor and V is the volume

of the material under study, the following is true,

V V

div v ) dV (i)

and , if mass is conserved (i.e. if div v = 0 ),

d( fp  dV)/dt --f(p D ,Dt)dV
V V

(2)
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The postulates of continuum mechanics are simply the summaryof

centuries of empirical observation of physical processes taking

place in the world. They could be listed as follows;

a) the principle of conservation of mass: " The mass of a given

body is independent of time". In symbols

= 0 (3)

b) The principle of conservation of momentum:"The rate of change

of momentumof a body is equal to the sumof the forces acting on

it", i.e,

d( V_f vdV)/dt = / T
A --

dA + V_2_ dV (4)

where T n is the field of contact forces.

c) The principle of conservation of energy: "The rate of change of

the total energy of a body is equal to the rate of work done on the

body plus the rate of energy transmission to it", i.e.

d( v_P (U + vy/2)dV = AJ v "(T "n) dA+_ V& (v'f) dV
+

+ fhdA + fp QdV

A V

(5)

where the terms on the R.H.S. are , respectively, the rate of
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work done by the contact forces, the rate of work done by the

external forces, the rate of energy transmission from the

envlroment to the body through its surface, and the rate of

energy generation inside the body.

Equations (3)-(5) are valid regardless of the size of the body,

thus , the relations valid for integrated quantities are also

valid for the quantities inside the integral signs. If one

uses now the transport theorem, the following forms of the

equations can be readily derived,

a) conservation of mass

_p/'_ t + div(p v). = 0 (6)

b) conservation of momentum

_v__/9 t + (_ v)" v = div T + pf (7)

and (c) conservation of energy,

jO _ ul'_ t + (_u)' v = - div q

+pq

+ tr(T "_v ) +

(8)
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Since Eqns(6)-(8) apply regardless the material constitution

of the body in question,constitutive equations for material

behavior must now be introduced to account for the widely different

properties of various materials. The constitutive equations

are simply relationships between quantities in Eqns(6)-(8) which

make the transport problem well posed. Typically, the flux of

momentum T , and the flux of energy, q , are related to the

intensity driving momentumtransfer, _ , and to the intensity

driving heat flow, _ u , respectively

Constitutive Equations for Material Behavior

The constitutive equations are relationships between fluxes

and intensities which enable us to classify materials into various

groups based on similarities in their mechanical and thermal

behaviors. Several rules have been laid down for the construction

of appropriate constitutive equations. However, most of the most

useful ones are based on the results of a great deal of empirical

research. Here we restrict ourselves to presenting someof the

most widely used constitutive equations.

a) The Newtonian fluid : "The stress is a linear function of the

strain rate", i.e.

T -- - p I + 2 _-((_v) + (_v) T )/2 (9)

b) The non-Newtonian, power law fluid-creeping solid,

160



T

where

and

- - p I_ + 2 7 ((_v_) +

= Seff/3 Deff

Deff = BIO ( Seff )

(_v) T )/2 (lO)

(10a)

(lOb)

where BIO and b are material properties and can be

obtained for the case of creeping solids from the compilation by

Frost and Ashby(1982). Moreover, since Def f and Sef f , the

effective deformation rate tensor and deviatoric stress tensor,

are functions of the strain rate, T in Eqn(10) is clearly

a non linear function of the strain rate.

For heat transfer, the most widely used constitutive equation

is Fourier's first law. This is,

q = - K(u) _ u (ii)

The substitution of Eqns(9) and (ii) into (6)-(8) leads to the

forms of the governing equations which are the strating point

for the calculations in this thesis. I.e.

a) the equation of continuity

+ div(p v ) = 0
(12) ,
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b) the equation of motion (Navier-Stokes),

p _ v_/_ t + (_ v)" v = - Vp + _div(_ v) + pf (13)

and (c) the differential energy balance,

_ E/_ t + (_ E)" v = div( K _ u) + tr((T + pl)" _v) +

+ p Q (14)

Equations (12)-(14) are the starting point of all of our

calculations. However, before embarking oneself on the problem

of solving these equations one has to look for suitable

boundary conditions. Moreover, multicomponent systems are very

common in practice and due account must be taken for them. So,

in the next section we comment on the formulation of mass

transfer problems in multicomponent systems and then we discuss

the most commonly used boundary conditions for transport phenomena

problems.

Multicomponent Systems: Mass Transfer

Although the presence of several components complicates the

situation, relatively few additional ideas are required to

formulate the governing equations for the case of multicomponent

systems. Specifically, each of the component species in the
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system can be regarded as a continuous mediumwith a variable mass

density field. The model for the multlcomponent mixture is then a

superposition of all these continuous media.

A new vector field is also introduced to describe the rate of

motion of each species in the system. Such quantity is called the

mass flux vector j . The mathematical indetermlnancy resulting

from the introduction of the mass flux vector has to be resolved

by establishing constitutive relationships linking j with

the corresponding intensities for mass transfer. This is

reminiscent of the procedure followed before to transform Eqns(7)

and (8) into (13) and (14). The simplest possible case is that

of binary systems. In this case the constitutive equation is

known as Fick's first law. For the binary system, the equation of

continuity takes the following form,

C/_ t + ( _C)' v = div( D _C) + r (15)
-- C

Boundary Conditions for Momentum, Heat and Mass Transfer

For Eqns(12)-(15) to constitute a well posed problem, boundary

and initial conditions representing the specific systems under

study must be added. These conditions are nothing but restrictions

on the values of the field variables or their fluxes, imposed by

the actual physics of the problem, at some locations on the

computational domain. We now describe some of the most widely used
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boundary conditions for the solution of transport phenomena

problems.

a) Boundary conditions for fluid flow problems.

(i) Continuity of tangential components of velocity at phase

interfaces. This is the well known no-slip condition (Batchelor

(1967)). In symbols, denoting by a subindex a, b the phases

in question, we have

( v " t ) = ( v t ) (16).
a b

(ii) Discontinuity of tangential components of velocity at phase

interfaces . This condition, as opposed to the previous one, allows

for some slip at the interface between phases in relative motion.

It seems to be particularly useful when dealing with problems

involving lines of contact (e.g. Dussan(1979)). In symbols, one

possible way of expressing this, is

(v t) = _(v t)
a b (17)

(iii) Continuity of stress at phase interfaces. Both the

tangential and the normal components of the stress acting on the

phase interface must satisfy continuity relationships which

involve stresses due to surface tension effects ( Levich and

Krylov(1969)). For an interface separating two Newtonian fluids,
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the balance of tangential stresses is,

(_Dij t i nj ) : (/_ Dij t i nj ) + _ 0v ' t (18)a b

T
where Dij = (( _ v_) + (_ v) )/2 , and the usual

summationconvention of adding over repeated subscripts has been

used.

And the balance of normal stresses is,

p - (_ Dij ni nj )a a Pb - (P Dij ni nj )b +

+ ¢ (2 ) (19)

b) Boundary Conditions for Heat Transfer Problems.

(i) Temperature specified at the interface (Dirichlet condition).

In symbols

(ii)

u -- u (20).

a b

Heat flux specified at the surface (Neumann condition).Here,

( K _ u ) n = f(x,t) (21).
a

(iii) Heat flux at the surface specified by a heat transfer

coefficient (Cauchy condition). In this case,
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( K _ u ) " n = - h ( u - u_ ) (22).
a

iv) Continuity (or discontinuity) of the heat flux at the phase

interface. This condition is also called ideal cooling (in the

case of continuity) or the Stefan condition (in the case of

moving boundary problems with a discontinuity). F6r ideal

cooling , in symbols,

( K _ u ) = ( K _ u ) (23).
a b

Whenheat is released/absorbed at the phase interface due, for

example to a change of phase (Stefan problem), this must be

accounted for by adding a corresponding term to Eqn(23), (see

Sec(3A.2) below). Additional discussion about the boundary

conditions for heat transfer problems can be found in Luikov

(1980).

c)

i)

Boundary Conditions for Mass Transfer Problems.

Concentration specified at the interface (Dirichlet condition),

C : C (24).

a b

In many instances, the given concentration at the interface is the

equilibrium value for the system under consideration.
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ii) Mass flux specified at the surface (Neumanncondition),

(D V C ) " n -- g(x,t) (25)
a

If there is generation/consumption of solute at the interface due

to a reaction, g is given by chemical kinetics.

iii) Mass flux at the surface specified by a mass transfer

coefficient (Cauchy condition),

( D _7 C ) n = k ( C - C ) (26)
-- m _ "

a a

iv) Continuity (or discontinuity) of the mass flux at the sur-

face or phase interface. When solute is generated at a phase

interface due to a heterogeneous chemical reaction, the mass

flux has a discontinuity at that interface. One example of this

kind is the Stefan problem for alloy solidification (Sec(3A.2)).

In symbols, this condition is then,

((D _ C) - (D _C) )'(grad F)

a b

= (C(F-) - C(F+))( _F/'_ t)

(27)

Very often, however, Eqn(23) is replaced by Eqn(25), requiring

only the evaluation of the function g .
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A Note on Flow in Thin Liquid Films and on Flows with Negligible

Inertia

It can be expected that, when a fluid is in the form of a thin

film, far less time will in general be required for the attainment

of approximate equilibrium in the direction of the film thickness

than in the direction of its length. Furthermore, the flow of

liquids in thin films is an example of a system in which both

viscous forces and surface tension effects play important roles.

The governing equations for fluid flow can be considerably

simplified for the case of flow of thin liquid films. This

simplification comes about because of the following reasons:

(i) Since the thickness of the film is small, all velocity

derivatives across the film are large compared to those along

its length, and (ii) the flow in thin liquid films can be safely

assumed to be quasi-unidimensional.

If a coordinate system is chosen with the x- axis in the

direction of the length of the film and the y- axis in the

direction of its thickness, the Navier-Stokes equations become,

Vx/_t + v _ Vx/'_x + v _Vx/_yx y

and

(i/_)_ p/_x +

y2+ (_/_ ) _2Vx/'_ + fx (28a)

_ p/_y = 0 (28b)
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If one of the surfaces of the film is a free surface, the pres-

sure there can be assumedequal to the capillary pressure and if

the film is so thin that virtually the samepressure exists across

its thickness, the first term on the R.H.S. of Eqn(28a) becomes,

- (iI_) dPr /dx = (_I 2 ) d3Hldx 3 (29)

Now, since v = _ H/_t + v _H/_x , the use of the
y x

equation of continuity, for steady state conditions, leads to,

9H/"_x = -(i/v x) _'_ ( Iv x dy)/gx (30)

Equations (28)-(30) constitute the mathematical representation

of the fluid motion which takes place inside thin liquid films.

It is well known that the presence of the non linear term

_" _ in the Navier-Stokes equations for the thin film makes

the solution very difficult for all except the simplest flows.

It is possible, however, to neglect this term in some cases.

Although the term may not be really zero in these circumstances,

it will be relatively small and the approximation can be justi-

fied. Furthermore, if steady state exists, the entire inertia

term in the equations can be neglected when compared with either

the pressure or the viscous forces. Flows such as these are

known as flows with negligible inertia. The geometrical arrange-
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ment characteristic of flows with negligible inertia is such that

the thickness of the film must vary along its length and that the

tendency of the motion must continually be to drag a supply of fluid

from the thicker to the thinner portions of the film.

The formulation resulting from the use of the assumptions men-

tioned above is known as the theory of lubrication. In summary, the

basic assumptions of the theory (e.g. Hamrockand Dowson(1981)) are,

i) the inertia and body forces are negligible comparedwith the

pressure and viscous terms,

ii) there is a negligible variation of the pressure across the film

thickness,

iii) the derivatives of the velocity in the direction of the thick-

ness are muchlarger than the derivatives with respect to the film

length,

of lubrication theory into

iv) laminar flow conditions exist,

v) the fluid properties are constant across the thickness, and

vi) there is no slip between fluid and solid boundaries.

In the most general case, the introduction of the assumptions

Eqn(13) leads to

-- v__P _A'_ 2
(31)

The introduction of suitable boundary conditions and the consid-

eration of Eqn(12) lead to solutions of the general form,
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v/V = v/V (x/L, geometry of the B. C.'s )o m o (32)

if the boundary conditions involve v only. Here V is ao

reference velocity, usually that of the moving substrate.

For additional information on lubrication theory one can

consult Batchelor or Schlichtlng(1979).

For the verification of approximations such as those of

lubrication theory it is frequently necessary to determine the

relative importance of the various terms in the governing

equations. For this purpose one can use a so called order of

magnitude analysis (see e.g. Schlichtlng). The final result

of such an analysis is in the form of certain quantities called

dimensionless numbers. These numbersare actually ratios de-

scribing the relative importance of the various terms in the

governing equations. The actual numerical values of these

ratios can be an useful first guide towards the understanding

of complex physical processes involving heat transfer and

fluid flow. Since RSP systems are characterized by these

features, in Table(l) below we list someof the dimensionless

numbers more frequently found to apply. For additional

details on the subject of dimensional analysis the reader can

consult the book by Szekely(1979).
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3A.2.- The Formulation and Solution of Solidification Problems.

Introduction

The basic feature of solidification problems (also called

Stefan problems) is that they are represented by a parabolic

diffusion equation which has to be solved inside a region whose

boundaries are to be determined as part of the solution. In the

typical solidification (melting) problem, a substance has a

transformation temperature at which it changes phase with emission

or absorption of heat. The liberation or absorption of heat

takes place at the moving surface of separation between the two

phases. This surface of separation together with the temperature

field inside the two phases constitute the solution to the

solidification (melting) problem.

Stefan problems are at the core of casting metallurgy and good

reviews of the metallurgical aspects are available (e.g. Flemings(

1974)). Here we will concentrate on the mathematical aspects of the

subject by presenting the formulation of the governing equations

and the available techniques for their solution.

Formulation

The mathematical statement of the Stefan problem, in the absence

of fluid motions, consists of the following sets of equations:

i) The heat equation
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_ui/'_t = div( _ grad ui) + rh (i)

i = s , I

ii) the heat balance at the moving boundary (Stefan condition),

where

iii)

1

L _F/'at = ( K grad u ) ' grad F (2)

F(_,t) = 0 is the phase change surface.

Equilibrium phase change temperature at the interface

u u u (3),
s i f

iv) appropriate boundary conditions on all other boundaries,

which could be of Dirichlet, Neumann or Cauchy type.

v) Initial conditions.

Detailed reviews of the formulation of Stefan problems can be

found in Tayler(1975) and in Crank(1984).

The problem represented by (i)-(v) above is nonlinear because

of the moving boundary. The temperature field depends on the

exact location of the boundary and this in turn depends on the

temperature.

Exact, closed form solutions to the Stefan problem are known

for only a small number of simple situations. In all cases these
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solutions apply to one dimensional situations. The one dimensional

Stefan problem is described by the following equations (see e.g.

Carslaw and Jaeger(1959)),

u /_t = "_( _ (_Us/_X))/_x
s s

(4a)

Ul/_t = _( _i(_ Ul/_X))/'_x (4b)

K _usl_ x - K 1 _ u11_ x = p L _ XI_ t (4c)s

and
Us = uI = uf (4d)

Closed Form Solutions

Only two exact solutions of Eqn(4) are available. These are the

solution due to Neumann and the one due to Schwarz. Both are

applicable only to infinite regions and under Dirichlet type

boundary conditions. Schwarz's solution , however, incorporates the

mold into the calculation.

a) Neumann's solution. If the problem represented by Eqns(4a)-(4d)

is complemented by boundary and initial conditions such as

and

u(O,t) = u I • uf (5a)

u(x,O) = u 2 • uf (5b)
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the solution is

Us -- Ul + (uf - uI) erf( x/2(_ t) I/2 )/ erf _ (6a)
s

uI = u 2 + (uf - u2) erfc( x/2(_ I t)
1/2

)/ erfc(_( _'/s _i )I12)

(6b)

where the quantity

X = 2 _ ( _ t) I12
s

is the root of

(6c)

exp(- _2)lerf_
K I

1/2
s (u2 uf) exp(- _s 42/ _i )

K _ 112 _s 1 (uf Ul) erfc( _(_s/_l )I12)

L qfll2/ Cps (uf - Ul) (6d)

In Sec(5.2) above we have included a FORTRAN program called

NEUMANNwhich computes the instantaneous moving boundary location

X(t) and the temperature fields, Us(X,t) , and Ul(X,t ) by means

of Eqns (6a)-(6d).

b) Schwarz's solution- Here the chill is incorporated into the

problem by imposing Dirichlet conditions at a point in the mold

far away from the mold-casting interface. Figure(l) shows

schematically how the two solutions differ.
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MOID SOLID LI_ID

(a)

(b)

Fig (3A.2._).- Schematic comparison between (a) Neumann's and (b)

Schwarz's solutions of the classical Stefan problem.

178



Since now the mold is included in the calculation, the heat

equation for the mold must be solved together with Eqns(4). For the

mold we thus have

_Um/ _ t = _ ( _m ( _Um/_X))/_x (7a)

with the boundary condition

um -_ u I < uf , when x -_ - ,_ (7b).

The solution of the system of Eqns(4a)-(4d),(7a) and (7b) is

u
m

Ks _ 1/2m (uf - uI)

K @(.1/2 + K 1/2 erf
S m m s

( i + erf( x/2(¢_ m t)I/2)) +

+ uI , for x < 0 (8a)

u
S

(uf - Ul) (Ks _1/2 + K 1/2 erf(x/2( _ t)I/2))m m s s

K _i/2 + K .1/2
s m m_ m erf

+ uI , for 0 ( x < X (8b)

_ t) I/2)
(uf u 2) erfc(x/2(_ 1

u I = + u 2 , for x _ X

erfc( _ ( _s / _i )I/2 )
(8c)

X = 2 _( _ t) I/2 (Sd)
s
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where _ is the root of

K O_.I/2 exp( - _2)
m s

_ 1/2 + .1/2 erf
Ks _m Km _s

+

KI _i/2 _s (u2 uf) exp( - _s 42/ _I )
+ =

Ks 61/21 (uf - Ul) erfc( _ ( _s / _i )I/2)

L _i/2

C

ps(Uf u I)

(8e)

In Sec(5.3) we have included a program called SCHWARZ which

computes the instantaneous position of the moving boundary and

the temperature field according to Eqns(8).

c) The Case of Alloys. While pure substances solidify (melt) at

a fixed temperature in normal circumstances, alloys change phase

along a temperature range. This range is limited by the liquidus

and solidus temperatures of the alloy, respectively, u L and

u S . Moreover, during alloy solidification more or less severe

solute redistribution processes take place. Here we restrict our-

selves to the thermal problem which can be handled in a way

analogous to Neumann's and Schwarz's solutions above if the

following simplifying assumptions are introduced;

i) the heat of freezing is liberated uniformly over the melting

range,

ii) the liquid is initially at the liquidus temperature, and

180



iii) inside the melting range a specific heat given by

= + L/ - (9)
Ceff Cpl (uL uS)

is used.

It is now possible to write the solution to the alloy solid-

ification problem according to either the Neumannor the Schwarz

formulations. However, instead of Eqns(6d) and (8e) one should

use

exp((_ s - _i ) 42/ _i ) erfc( _( _s / :_I )I/2 )

erf

or

(uL _ Us ) KI _i/2
s

(us _ Ul ) o_.1/2I

1/2
K _ exp((
m s s - _i ) _k2/ o(I) erfc( _%.(O_s/ _i )I/2)

K _i/2 + K _ i/2 erf
s m m s

(i0),

(uL - Us ) KI _1/2s

_I/2
(Us - Ul) Ks i

(Ii).

These expressions were obtained by simply making L = 0 in

Eqns(6d) and (8e) (since the latent heat is included in Ceff) "
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For actual computations one uses Ceff instead of CI and uS

instead of uf in Eqns(6a)-(6c),(10) or (8a)-(8d),(ll). The

programs NEUMANNand SCHWARZgiven in chapter 5 can be

used to perform these calculations after the incorporation of

these changes.

Additional analytic or semi analytic techniques have been

used for the solution of Stefan problems in other geometries and

with different boundary conditions. However, methods such as

integral profile, series expansions and invariant embedding are

limited to still relatively simple configurations. The availa-

bility of digital computers has led to the displacement of all

these techniques by more convenient finite difference or finite

element methods. The analytical solutions remain important,

however, since they are used to verify the accuracy of numerical

methods and sometimes to start the computational algorithms.

The solution of most of the solidification problems found in

practice will invariably require the use of numerical methods.

Numerical Methods for Solidification Problems

Since the advent of digital computers many complex solidification

problems have been solved. Manynumerical techniques have been

proposed to handle the nonlinearities introduced by the moving

boundary. No single "best" method seems to exist, however. Gener-

ally speaking all numerical methods subdivide the region of

interest into small volume elements. Discrete forms of the
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energy equation are then written for each element and the entire

set of resulting equations (for the whole system) is solved by

standard algebraic methods.

Broadly speaking, the numerical methods used for the solution

of Stefan problems can be classified according to the following

three criteria:

a) According to the treatment of the moving boundary. In this

case one has;

i) front tracking methods (Hsu et ai(1981)). By careful readjust-

ment of the computational grid during the computation, the

precise location of the boundary is recorded for every time step°

The computational grid itself is redefined at each step on the

basis of the motion of the solidification interface.

ii) Fixed domain methods (Voller and Cross(1981)). The Stefan condi-

tion (Eqn(2)) is absorbed into the heat equation by introducing the

enthalpy. The resulting equation is then solved in a fixed grid.

The boundary can also be fixed, however by performing a coordinate

transformation using the solidification interface location as the

reference length of the transformation.

b) According to the discretization technique employed. Here we have:

i) finite difference methods (White(1983)). These are the easiest

to implement, however, special equation are required at the outer

boundaries in the case of irregular domains.

ii) Finite element methods (Ettouney and Brown(1983)). Here the

discretization equations is derived from a variational principle.
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Since quadrilateral grids are not mandatory when using F.E., it

is easier to fit the grid to the boundaries of irregular compu-

tational domains.

c) According to the procedure used to advance the solution in

time. In this case we have;

i) explicit methods (Voller and Shadabi(1984)). The temperature

at a given location depends only on the temperatures of neigh-

boring points at the previous time step.

ii) Implicit methods (Elliott and Ockendon(1982)). The tempera-

ture depends on the temperatures of neighbouring points at the

present time step.

iii) Semi-implicit methods. A combination of (i) and (ii) above.

Muchmore additional information about all these techniques and

others can be found in the recent monographby Crank .

Whenselecting a numerical method for a given problem, accuracy,

ease in programming, stability and consistency are amongthe most

important considerations. Since for the work reported in this

thesis weused an explicit finite difference fixed domain method

for the solidification calculations, this we will review in some

detail. For the presentation we follow Elliott and Ockendon

where the reader will find manydetails not covered in this brief

review.

Fixed DomainMethods

a) Formulation. Whensolving problems with moving boundaries one
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is usually interested on the properties of the phase chage boundary.

Since heat is released or absorbed at the phase change temperature,

this gives rise to discontinuities in the derivative of u across

the interface. To deal with this lack of differentiability one

introduces the concept of weak solutions. To describe weak

solutions we start by noticing that Eqns(1) and (2) above repre-

senting the differential energy balance can be written in a

different but equivalent form by using the enthalpy. From

thermodynamics, the enthalpy is given as a monotonically in-

creasing function of the temperature, i.e.

E = f( u ) (12)

It can be shownthat the original Stefan problem described by

Eqns(1) and (2) can be reformulated in terms of Eqns(12) and (13),

_E/_t = div( K grad u ) (13).

The classic solution to the Stefan problem thus being a pair

of functions of time and position {u, F _ such that Eqns(12)

and (13) , hold. The introduction of the enthalpy is useful for

computational purposes since the location of the phase change

surface is now implicit in the governing equations. Thus, instead

of focusing on the pair {u, F _, we concentrate on {u, E_ ,

with a considerable programming simplification. One can readily
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verify that the formulation of the Stefan problem in terms of u

and E is entirely equivalent to the original formulation in

terms of u and F through the introduction of the concept

of weak solutions.

A weak solution of the Stefan problem is defined as a pair of

bounded integrable functions {u, E I inside the domain of

interest,such that Eqn(12) is satisfied and the integral identi-

ty (with Dirichlet data),

tSf (p "_ _/_t + u _2_l_ ) dxdt

fpE (x)

£z
_(x_,0) dx_ + !7 8 (_/1) n) dA dt (14)

where t is the time and x the space,

functions _ with continuous derivatives

and °'_2_ /_x 2 , such that _ = 0 on

holds for all test

_/_) t , _/'_ x,

x = 0, 1

The two most important properties of such weak solutions are

the following. Firstly, it can be proved that the weak solution

exists and is unique. Second, certain difference schemes converge

to the weak solution. These two properties are an essential

requirement for any numerical technique to be useful. Most im-

portantly, the consideration of weak solutions eliminates the first

spatial derivative of u from the formulation making then

unnecessary the separate consideration of solid and liquid regions

in the computer code. The calculations are instead performed inside
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the entire domain of interest using the samefinite difference

form and the location of the solidification interface is determined

from the resulting temperature field. So, no complicated front

tracking procedures are necessary and a rectangular grid can

conveniently be used. More information about the mathematical

aspects of weak solutions can be found in Atthey(1975).

b) Discretization of the weak formulation. Equation(13) must be

put in a form suitable for computer calculations. This process is

called discretization. Discretization can be done according to

any of several more or less standard procedures. Finite differences

and finite elements being two popular examples of discretization.

Since for the calculations reported in this thesis a finite

difference method was used, this we will describe. The main ideas,

however, are independent of the discretization method used.

Assumefirst that the domain of interest is covered by a

uniform, rectangular net. A finite difference approximation to

Eqn(13) can be obtained by simply replacing spatial derivatives

with central differences and the time derivative with a one

sided difference (see e.g. Ames(1977)). The discrete problem

n+lthus consists of finding vectors En + 1 and u , the

values of the enthalpy and the temperature at the meshpoints

th
for the n + 1 time step such that,

n+_
En + 1 _ En + A u = 0 (15)
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where
n+l nn + _ u + (i - _ ) u (16)U =

and such that

n+l
n + i • f( u ) (17).

Ei i

Note that, in Eqn(15) the matrix A is the finite difference

approximation to the Laplacian operator. Also note that the values

of _ = O, 1/2, and i , correspond, respectively to the

explicit, Crank-Nicolson and implicit time discretizations. In

particular, the explicit scheme has been found to be stable and

convergent to the weak solution as long as the stability restric-

tion

At/(_x) 2 _ 1/2 (18)

is satisfied. The stability constraint, however, may lead to

prohibitively small time steps when using fine grids. In this

circumstances the added complexity of an implicit scheme may be

warranted. Elliott and Ockendon have proposed a successive

overrelaxation algorithm for the solution of the equations

resulting from the implicit scheme and they have proved that

their method is stable and convergent. The main reason for the

adoption of the explicit scheme in this work was, however, the

simplicity of its implementation.
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c) Weaksolutions for alloy solidification problems. Most materials

of metallurgical interest are alloys and it is indeed fortunate that

the enthalpy method can be readily extended to deal with alloy

solidification problems. Since alloys do not solidify at a fixed

temperature but along a melting range, the enthalpy-temperature

curves for alloys do not show the jump characteristic of pure

substances (see Fig(2)). The explicit finite difference scheme

of the weak formulation for the alloy solidification problem is,

with

n+l
ui

En + i = En - A un (19)

I_ En+l(Ei + 1 _ Ef) + uL , for i > Ef

= _ (Ei+I/Ef)(u e - Us) + us , 0 __En+l_ Ef

_.Ei + i + Us , Ei+I " 0

(20)

= KuIn this set of equations, however, one usually uses ui i

The computational procedure is as follows_ Eqn(19) is used

first to calculate En+l in the entire domain, then, Eqn(20)
n+l

permits the calculation of the temperature field u • This

algorithm is stable and converges to the weak solution of the

original problem as long as the stability constraint given by

Eqn(18) is satisfied.

It must be said, however, that the alloy solidification problem

also requires the calculation of the solute distribution resulting
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Fig (3A.2.2).- Schematic comparison of the enthalpy-temperature

curves for the cases of (a) a pure substance, and (b) an alloy.
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from the difference in solubility of the impurity in the solid and

liquid phases. Thus, a species transport problem has to be solved

simultaneously with the heat equation. So besides solving Eqns(19)

and (20) one also has to solve (see Sec(3A.l) and also Wilson et al

(1984)),

"_ Cil_t + (_ Ci)' v -- div( D grad Ci) + r (21)
-- C

where Ci

i = s , i

is the concentration of solute in the solid or

liquid phases for the particular case of a binary alloy system.

Moreover, a "jump" condition, analogous to the Stefan condition

for heat transfer, must also be considered

mass transfer problem, i.e.,

in the solution of the

s

(C(F-) - C(F +) )('_F/'_t) = ( D grad C )

1

grad F

(22).

Furthermore, since the heat and mass transfer problems are

coupled, one usually assumes thermodynamic equilibrium at the

solidification interface, i.e.,

where

u(t,F-) = u(t,F +)

uA

= m s C(t,F ) + uA

= mL C(t,F +) + uA

is the melting point of the pure solvent,

(23)
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Wilson et al. have reformulated the alloy solidification problem

in terms of weak solutions in an analogous way to the enthalpy

formulation of the Stefan problem. They claim good results from

the use of an explicit finite difference schemeto solve the

coupled heat and mass transfer problem.

d) Solidification in the presence of fluid motion. This problem

has been the subject of continued research for at least the last

30 years. The peculiar effects of fluid flow on the solidified

material were recognized early on (e.g. Flemings(1956) and Roth and

Schippers(1956)). The role of fluid motion in the dissipation of

the melt superheat was also noticed (Adenis et ai(1962)). Sahm(1982)

has presented a comprehensive survey of the metallurgical effects

of fluid motion during solidification.

The mathematical problem of phase change with fluid motion

involves the solution of the fluid flow equations together with

the energy balance incorporating a convective term. This is not a

straightforward problem since the indetermination in the location

of the solidification interface makes the flow problem into a

non linear boundary value problem with unspecified boundaries.

Thus, although the existence of a weak solution to the Stefan

problem with convection due to Stokes' flow has been mathemati-

cally proved (Cannon et ai(1983)), the actual numerical solution

of specific problems is still the subject of active research.

Most treatments to date have circounvented the flow problem.
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Typically, a heat transfer coefficient is introduced at the phase

change surface to account for the fluid motion (Larreq et ai(1978)).

Amongthe few reports of rigurous solutions most apply to

simple geometries. Sparrow et ai(1977) used a front tracking method

to model melting inside a narrow cavity with natural convection.

White(1982) used a fixed domain method to solve a somewhatsimilar

problem, 0'Neili(1983) and Argyris et ai(1984) have used finite

element analysis to model melting with fluid flow in cavities.

Oreper and Szekely(1984) used a hopscotch fixed domain algorithm

to describe melting and electromagnetic stirring inside welding

pools.

Since the additional non linearities introduced by the flow

equations will most likely complicate the solution of the Stefan

problem, simplified versions of the general problem can be

expected to be more easily solved. For example, the calculations

by Miyazawa and Szekely (1979),(1981) and the ones reported in

this thesis for the Stefan problem with fluid flow produced by

an inertialess fluid, are a proof of this claim.
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3A.3. - The Solution to the Fluid Flow Equations for the PFMS

System.

For the schematic PFMS puddle shown in Fig(3.3.1.2) ( and

photographed in Plate(3.3.1.1_)), the governing equations for

fluid flow at steady state are;

the equation of motion

/_ d2 Vx/dy2

and the equation of continuity

dP/dx (1)

H

Q -- w J Vx dy (2)

0

One can integrate Eqn(1) with respect to

location to obtain an expression for V
X

y for a fixed

, i.e.

X_

Vx = (I/2_)(dP/dx)y2 + K I y + K 2 (3)

Where the coefficients K I and K 2 depend on the particular

boundary conditions used.

The boundary conditions on the top surface of the puddle change

after the puddle detaches itself from the nozzle lip in the

downstream direction. Because of this, the regions before and

after the detachment point must be treated separately.

194



a) Points before detachment. In this region the appropriate

boundary conditions are:

i) the no-slip condition at the puddle nozzle interface,i.e.,

Vx = V = 0 at y = H (4a)Y

and (ii) the continuity of velocity at the solidification

interface, i.e.,

V = VI V = VI on Y = Ys (4b)x , yx y

where _I is the (Eulerian) velocity of the interface.

Substitution of Eqns(4) into (3) and rearrangement leads to

where

2
Vx = Ao + AI y + A2 y (5a)

Ao -- (i/2_) (dP/dx) H Ys vI /((ys/H) - l) (5b)
x

and

A I = Vlx/(y s - H) - (!/2_)(dP/dx)(Ys + H) (5c)

A 2 -- (i/2 r )(dP/dx) (5d)
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Wecan readily see that the specification of five quantities,

VI , H , _ , dP/dx , and Ys allows the calculation of
x

the velocity field. V I ( _ Vr ) and H (_ Ho ) are
x x

usually input data whereas Ys can be calculated from any

of several solidification heat transfer models, dP/dx , on the

other hand, has to be computed such that it satisfies the

equation of continuity . At any given downstream location x,

the total mass flow rate crossing through the entire puddle

thickness is given by

Q = Qs + Q1 (6)

where Qs and Q1 are, respectively , the flow rates

carried by the partially solidified ribbon and by the fluid film

above it. Now, since the ribbon moves like a rigid body while

the film is a Newtonian fluid, Qs and Q1 are given by,

iSQs = w v r dy (7a)

0 x
and

H

Q1 = w / Vx dy (7b)

Ys

Performing the integrations of Eqn(7) and combining the

result with Eqns(5) and (6) gives,
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Q/w = Vr Ys + Vr /2(H - ys ) +
x x

whence

(i/2_)(dP/dx)(H3/6)( i - 3(Ys/H) + 3(Ys/H) 2 - (Ys/H) 3 )
(8)

dP/dx = 12/_

(Vr /2(H - ys)) + Vr Ys - Q/w
x X

H3 (i - 3(Ys/H) + 3(Ys/H) 2 - (Ys/H) 3)

(9)

As expected, in the absence of solidification, Eqn(9) reduces

to the well known one dimensional form of Reynolds' equation of

lubrication theory (see e.g. Szekely(1979),p.l15).

Equations (5) and (9) allow us to compute the velocity field

once the process parameters and the solidified thickness are

known.

Sometimes it is useful to present the results of flow calcu-

lations in terms of the stream function rather than the velocity.

A normalized stream function can be defined for our system as,

Y

_ = (w/Q)f Vx dy

0

(io)

Substitution of Eqn(5) into (i0) gives,

= w ( Vr Ys + (A2/3)(y3 _ y3s) + (Al/2)(y2 - y2s) +

X

+ Ao(Y - ys ) )/ q (ii)
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b) Points after detachment. After detachment the no slip condi-

tion can not be applied to the top surface of the puddle. This

is so because the fluid particles on this melt-gas interface are

muchmoremobile than those on the melt-nozzle interface. For

this case the proper boundary conditions are then,(see Sec(3A.l))

and

dV /dy = 0 on y = H (12a)
x

Vx = V I = V
r on y = Ys (12b)x x

Equation (12a) simply represents the continuity of shear force

across the melt-gas interface while Eqn(12b) is again the no

slip condition applied to the solidification interface.

It must be noted that the precise location of the melt-gas

interface (the free surface) is not known in advance but must

be calculated simultaneously with the velocity. The calculation

of H after detachment requires the consideration of the

capillary effects due to the surface tension of the melt and the

details are described in Sec(c) below. For the time being, we

shall assume that such calculation has already been performed

and that the function H(x) is known. Under these circumstances,

the combination of Eqns(12) with Eqn(3) gives,

2
Vx = Ao + AI y + A2 y (13a)
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where

Ao = Vr - (i/2/_)(dP/dx)(y_ - 2 ysH) (13b)
x

and

A I = - (I/2_) (dP/dx) (2H) (13c)

A 2 = (i/2/) (dP/dx) (13d)

Apart from the fact that the value of H(x) must be obtained

from a separate calculation, Eqns(13) are analogous to Eqn(5)

for points upstream.

Since Eqns(6) and (7) are still valid after detachment, they

can now be combined with Eqn(13) to obtain,

Q/w = Vr Ys + Vr (H - ys )
x x

- (i/_) (dP/dx) (2H3/3) *

and

*( I - 3(Ys/H ) + 3(Ys/H) 2 - (Ys/H) 3 ) (14)

Vr (H - ys ) + Vr Ys - Q/w

dP/dx = 3r x x (15)

H3( i - 3(Ys/H) + 3(Ys/H)2 - (Ys/H) 3 )

The corresponding expression for the stream function can now

be derived. This turns out to be identical to Eqn(ll) except that

the coefficients Ao, AI, and A 2 are now given by Eqns(13).
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c) Calculation of the meniscus shape. The region around the free

surface can be considered as constituted by three parts, namely

(i) the melt, (ii) the gas phase, and (iii) the interface between

them. In such a system the changes in free energy are related to

the changes in the volume of the bulk phases as well as to the

changes in the surface area of the interface. Denoting the free

energy change by dF , we have that

dF = - f(Pl - P2) dA dHI - f_(d2Hl/dX 2) dA dH1 (16)

Here, P1 and P2 are the pressures inside the bulk phases and

dA is an element of area of the interface. For equilibrium, the

free energy is a minimum, i.e. dF = 0 , thus

PI - P2 = - _(d2Hl/dx2) (17)

The difference in pressure between two contiguous phases

separated by an interface with surface tension

quantity in capillary hydrodynamics called the

is an important

capillary pressure

, i.e.

P_. - (_(d2Hl/dX 2) (18)

As described in Sec(3A.l), the equation of motion for the thin

film of melt contained between the meniscus and the solidification
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interface, u_er the assumptions of lubrication theory, is

dP/_x = d2V /dy 2 (19)

If the liquid layer is so thin that the pressure is essentially

constant across its thickness, the substitution of Eqn(18) into

Eqn(19) leadl to,

(d3Hl/dX 3) + _ (d2Vx/dY 2) = 0
(20)

Equation(20) can now be integrated with respect to y to

o_tain a cloH_ form expreslion for V This expression, in
X

turn, can be combined with Eqns(6) and (7) above to produce an

equation for th_ fluid film thickness H I This is

Recall that h_re, as before, H 1 = tt - v Equation(21) is
" S

a third order non linear ordinary differential equation which can

be used to compute the precise location of the meniscus. Closed

form solution to Eqn(21) are known only for the asymptotic cases.

Thereforl, a _rical m_tho_ i_ required to solve it for the

conditiona of our lyste_. This we describe next.
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To solve Eqn(21) using numerical methods we first transform it

into an equivalent set of three first order equations, i.e.,

!

dHl/dX = H I (22a)

and

I!

dHi/dx = H I (22b)

dH_/dx = (3/_-/ _")((Q1/wH31) - V r /H21 ) (22c)
X

This system can be written in the abbreviated form

d_i/dx = !(x) (22d)

= , ', " ) and f is the vector formed by
where _i ( HI HI HI --

the right hand sides of Eqns(22).

Although high order schemes may prove to be more accurate, for

the calculations reported in this thesis we have used the simplest

approximation method for initial value problems, namely Euler's

forward method. As initial conditions for Eqn(22) we have the

H I H I " at the detachment point. The valuevalues of , ' , and H 1

of H I = Ho - Ys , depends on the solidified thickness at the

_ "point of detachment. The values of H and H 1 , on the other

hand, have been estimated from still frames of high speed movies

of the puddle during PFMS Our estimates, from the photos,

were,
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and

V

H I - tan e (23a)

H_ = 2/ L (23b)
P

The discrete analogue of Eqn(22d) , obtained using Euler's method,

is (see e.g. Dahlqvist and Bj_rck(1974))

H_+I = H_ + Ax !(x) (24)

The calculation is then advanced step by step in the downstream

direction. Starting from the values given by Eqns(23) , the

repeated application of Eqn(24) allows the calculation of the

location of the free surface. However, note that the solidified

thickness must be calculated prior to solving Eqn(24) at each

step to account for the solidification. It is here where the

coupling between the flow problem and the solidification problem

is made (see Sec(3.3.1)).
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4A.i. - A Commenton a Numerical Method for the Solution of Problems

Involving Transport Phenomena.

Introduction

Whenfacing a problem involving transport processes it is always

advisable to look for suitable simplifying assumptions capable of

reducing the mathematical complexity of the problem. In many cases,

however, this is not possible and one must resort to numerical

methods for the solution of the governing partial differential

equations. The advent of powerful computers has contributed a great

deal to the development of the new field of numerical heat, mass,

and momentumtransfer. Manyprocedures have been proposed to deal

with the equations of transport phenomena.Unfortunately, however,

only a few of them are in the form of commercially available,general

purpose computer programs. One of the most successful methods is

the one developed by Patankar and Spalding, amongothers, at the

Imperial College of London. The Patankar-Spalding (P-S) method solves

the equations of transport using implicit finite difference schemes

derived from a control volume formulation. In the next few pages we

present a brief description of someof the main features of this

method hoping to familiarize prospective users of the commercially

available version. For additional information the reader can

consult the presentations by Patankar(1980) and Spalding(1980).
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The General Transport Equation

A careful look to the transport equations presented in Sec(3A.l)

will reveal that they all have very much the samemathematical form.

So, if instead of the physical variables velocity, temperature,and

concentration we introduce the generalized transported variable

, the differential balance, expressing the conservation of

can be written as

(I)

r _Z
where is the diffusion coefficient for _ and S is

the source term accounting for any absorption-release of #

inside the system.

The recognition of the mathematical similarity of the various

conservation equations produces considerable simplification of the

computational procedure since more or less the same method can be

used to find v , u, and C It must be also recognized,

however, that the solution of the fluid flow problem is more in-

volved than that of the heat and mass transfer problems. The added

complexity comes about because of three main reasons. First, the

Navier-Stokes equations (Sec(3A.l)) are non linear. Second, four

equations must be solved to determine the flow field, 3 for the

velocity components and one for the pressure (continuity). Finally,
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special techniques are required during the solution of the flow

equations to be ablo to obtain physically realistic solutions.

It is indeed fortunate that despite these complexities the P-S

algorithm retains its simplicity.

The basic idea of the numerical method is the replacement of

the governing equations by simple algebraic analogues which can

in turn be solved using a digital computer. The two main tasks are

then, first to devise a method for the derivation of the discrete

equations,and second to find a convenient method for their solution.

Discretization of the Governing Equations

To discretize the governing equations one starts by mentally

subdividing the region of interest into a number of small domains

called control volumes. The governing equations are then integrated

over the extent of such control volumes. Finally,one assumesa

local linear variation of the field variables inside every volume

element to arrive at the final set of algebraic equations repre-

senting the conservation principles inside the control volumes in

a discrete sense. The solution of this set of algebraic equations

is the (approximate) solution to the original problem.

Without going into details and for the sake of illustration we

now present the typical form of the resulting algebraic equations

for the control volume centered in P shown in Fig(l), as given

by Patankar for the case of unsteady two dimensional heat con-

duction with internal heat generation.
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f_

ap Up -- aE uE + aW uW + aN uN + aS u S + b

where

(2)

aE = Ke Ayl(_x)e ' aW = Kw Ayl(_x)w (2a,b)

-- K A x/(_y) n a S = K -- -_x/(_y) (2c,d)aN n ' s s

o
ap = _ C _ x _y/ At (2e)

P

and

b -- SC A x _y + ap Up (2f)

ap = aE + aW + aN + a S + a_ - Sp _x _y (2g)

In Eqns(2), _x _y *i is the volume of the control volume

and _ t the time step . Moreover, the source term has been

linearized, i.e. S = SC + Sp Up Note that if the domain

has been divided into N control volumes, the problem at this

stage consists of solving a system of N algebraic equations

with N unknowns ( u i , i = I,..., N ).

The Effect of Fluid Motion

When the field variable being transported travels by convection

as well as by diffusion the discretization equations must be

slightly modified to account for the fact that convective transport

takes place basically in the downstream direction of the flow .

This procedure is called upwinding .
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To deal with upwinding, Patankar proposes the so called "power

law" scheme based on the results of comparison of the results

obtained from it with the closed form solution of the one dimen-

sional convectlon-dlffusion equation. It is to the credit of the

P-S method that the discretlzatlon equations remain basically

unchanged after the introduction of upwlndlng, except for some

changes in the actual values of the coefficients. So, for the

two dimensional convection-diffuslon problem the actual coefficients

are; (see also Fig(2))

a E -- De A(_Pee_) + [[ - F 0 ]] (3a)e

aW = D A(_ Pew_) + [[ F 0 ]] (3b)w w *

aN = D A(_Pen_) + [[ - F 0 ]] (3c)n n '

a S = D A(_Pes_ ) + [[ F 0 ]] (3d)S s

O O

ap = .})p C Ax _y/ /%t (3e)P

b = SC _x A y + a; u; (3f)

ap = aE + aW + aN + a s + a; - Sp _x _y (3g)

where
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D -- K _y/(_x)
e e

, D = K _y/(_x) (3h,i)
w w w

D = K Ax/(_y)nn n
, D = K _x/(_y) (3j,k)

S s s

A(_Pe_) = [[ 0 , ( I - 0.1|Pe| )5 ]] (31)

and

Pe = Fe/De- , Pe = F /D , Pe = F-/Dnn- ' Pe = F /De w w w n s s s

(3m,n,o,p)

Fe = (_ Vx) e _y , Fw = (p Vx) w _y (3q,r)

F = (p Ax F = (p _x (3s,t)n Vy)n ' s Vy) s

In Eqns(3), the symbol [[ , ]] is a well known FORTRAN

operation which simply selects the greater of the two quantities

separated by the comma .

Note that even now the problem still consists of solving a system

of as many equations as volume elements there are in the domain.

The Computation of the Flow Field

Many of the difficulties associated with solving the flow

equations have been solved by the use of staggered grids of the

type shown in Fig(3). The discrete equation for the pressure is

derived by combining the discrete versions of the equations of
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continuity and motion. The resulting set of equations for the

general heat, mass, and momentumtransfer problem consists of the

the following (in the case of N control volumes): (a) One set

of N equations for the pressure field, (b) three sets of N

equations each for the three componentsof velocity, (c) one set

of N equations for the temperature field, and (d) as many sets

of N equations each as chemical components there are in the

system. In practice, many transport processes take place under

turbulent conditions and in this case additional conservation

equations (for turbulence quantities) must be introduced (from

corresponding turbulence models) to account for this. The references

given should be consulted for details in this regard.

The Solution of Systems of Algebraic Equations

From all the above it should be clear that once the discretiza-

tion procedure is finished the problem has been reduced to solving

sets of algebraic equations. These equations are not necessarily

linear. The method of solution, however, is the sameregardless

of this fact. The method is a combination of direct and iterative

techniques and it is known as the Gauss-Seidel line by line

method.

In the Gauss-Seidel line by line method one starts by selecting

a direction for sweeping. Then , the equations for the grid points

lying on a line perpendicular to the sweeping direction are solved

simultaneously using a direct method (e.g. Gauss elimination). The
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values used for the field variables of grid points on neighbouring

lines are the latest ones available in the computer memory. Once

this is done one moves forward to the next line of grid points

along the sweeping direction and does the same thing. This opera-

tion is continued until the entire domain has been swept line by

line. This concludes one sweep. However, since one uses guessed

values for the field variables in order to start the computation,

the sweeping operation must be repeated until the values of the

variables stop changing appreciably from one sweep to the next.

These final, converged values are considered the numerical solution

of the original problem. In Sec(5.7) we have included a program

constructed based on the P-S method and which is capable of

computing heat transfer by conduction-convection for two dimen-

sional situations . The flow field in this case, however, is not

calculated numerically but from closed form expressions given by

lubrication theory. Moreover, in Sec(5.6) we present a very simple

program capable of solving systems of algebraic equations directly.

This program can be used as the core of an algorithm b_sed on the

P-S method.

In practice, the need to solve many sets of equations simulta-

neously requires that some thought be put on the sequencing that

must be followed. Patankar proposes the following series of steps

as a general algorithm for the numerical solution of problems in

fluid flow and heat and mass transfer:
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a) Guess the pressure field,

b) solve the discrete Navier-Stokes equations to obtain a first

estimate of the velocity field,

c) correct the pressure by using the equation of continuity,

d) compute again the velocities but this time use the corrected

pressure,

e) solve the discretization equations for all other field

variables using the procedure described before. At the end of

this step, one sweep for all field variables has been completed.

f) Steps (b)-(e) are repeated again and again until the values

of all the field variables in all the control volumes stop

changing significantly from one cycle to the next.

Conclusion

The algorithm described above has been used extensively for the

solution of transport phenomena problems in mechanical, chemical

civil and metallurgical engineering. It offers the possibility of

exploring the behavior of complicated systems with a relatively

modest amount of effort. Instead of constructing his/her own

program following the ideas presented above and described in

detail in Patankar, the reader may choose to use the more convenient,

commercially available versions. An improved understanding of

RSP systems can be expected from the use of these ideas.
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Abstract

The detailed formulation of and the results obtained from a continuum mechanics-based mathematical
model of the planar flow melt spinning rapid solidification system are presented and discussed. The
numerical algorithm proposed is capable of computing the cooling and freezing rates as well as the
fluid flow and capillary phenomena which take place inside the molten puddle formed in the PFMS
process. The fundamental equations of the theory of heat transfer with change of phase and those of
the theory of lubrication and capillary hydrodynamics constitute the starting point of our formula-
tion. Our results show, for the first time, several unexpected phenomena taking place inside the
puddle; namely, recirculatory flows, stagnation points and fluid film thinning. The results also
point towards the strong coupling existing between the flow phenomena and the heat transfer-
solidification processes in this system. Comparison with available empirical evidence verifies the
correctness of our approach. Furthermore, we have also included in this report several other items
which should facilitate the extension of our methods to the study of other rapid solidification
processing systems. For example, although we justifiably neglected the undercooling phenomenon in our
calculations of the PFMS process, this cannot be done ]n various other RS systems. So we have
described the basic ideas required to incorporate undercooling effects into our formulation. The
basic starting point in this description has also been, however, the fundamental equations of
continuum mechanics. This should help to understand the comprehensiveness of our approach. We have
also included a description of the basic physical phenomena which take place in the various RSP
systems proposed to date. The importance of fluid dynamics and the heat transfer-solidification
phenomena are demonstrated. We believe that there remain many opportunities for useful modeling work
in these systems. The main result expected from our work is a better understanding of the relation-
ships between the processing variables and the structure and properties obtained in the products of
RS. Needless to say, theoretical work of the type described here and experimental research must be
combined in order to reach this end more quickly. Finally, for the convenience of the reader and also
for the sake of completeness we have also included, (i) the FORTRAN listings of some of our most
useful computer programs and (ii) a collection of appendices describing the basic equations used for
the modeling. We hope that the research reported here illustrates the potential contribution
mathematical methods can make to the understanding of the complex nature of RSP systems. ____

Key Words (Suggested by Author(s)) ]18 Distribution Statement

/
Melts spinning; Superalloys; |Unclassified - unlimited

Rapid solidification; Coarsening /STAR Category 26

1

Security Classif. (of this report)Unclassified 20. Security Classif. (of this page)Unclassified 121 NO"Ofpages238 122"Price"All

*For sale by the National Technical Information Service, Springfield, Virginia 22161


